Skip to main content
Log in

Prediction and Evaluation of Time-Dependent Effective Self-diffusivity of Water and Other Effective Transport Properties Associated with Reconstructed Porous Solids

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We reconstructed pore structures of three porous solids that differ from each other in morphology and topology of pore space. To achieve this, we used a stochastic method based on simulated annealing and X-ray computed microtomography. Simulated annealing was constrained by the following microstructural descriptors sampled along the principal and diagonal directions: the two-point probability function for the void phase and the lineal-path functions for both void and solid phases. The stochastic method also assumed the isotropic pore structures in accordance with a recent paper (Čapek et al. in Transp Porous Media 88(1): 87–106 (2011)). With the exception of the solid with the widest pores, we made tomographic volume images in high and low resolution, which enabled us to study the effect of resolution on microstructural descriptors and effective transport properties. A comparison of the two-point probability function and the lineal-path function sampled in the principal directions revealed that the pore structures derived from the tomographic volume images were slightly anisotropic, in opposition to the assumption of the stochastic method. Besides the anisotropy, other microstructural descriptors including the pore-size function and the total fraction of percolating cells indicated that the morphological and topological characteristics of the pore structures depended on the reconstruction method and its parameters. Particularly, the pore structures reproduced using the stochastic method contained wider pores than those obtained using X-ray tomography. Deviations between the pore structures derived from low- and high-resolution tomographic volume images were also observed and imputed to partial volume artefacts. Then, viscous flow of incompressible liquid, ordinary diffusion, Knudsen flow and self-diffusion of water in the reconstructed pore spaces were simulated. As counterparts, experimental data were measured by means of permeation and Wicke–Kallenbach cells and pulsed field gradient NMR. Deviations between the simulated quantities on the one hand and experimental data on the other hand were generally acceptable, which corroborated the pore-space models. As expected, the predictions based on the tomographic models of pore space were more successful than those derived from the stochastic models. The stationary effective transport properties, i.e. the effective permeability, the effective pore size and the geometric factor, were sensitive to a bias in long-range pore connectivity. Furthermore, the time-dependent effective diffusivity was found to be especially sensitive to relatively small morphological deviations between the real and reconstructed pore structures. It is concluded that the combined predictions of the effective permeability, the effective pore size, the geometric factor and time-dependent effective self-diffusivity of water are needed for the reliable evaluation of pore-space reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Voxel or pixel size

\({\mathscr {C}}_2^{(s)}\) :

Two-point cluster function for the solid phase

\({\mathscr {C}}_2^{(v)}\) :

Two-point cluster function for the void phase

D :

Diffusivity (scalar)

\({{\textsf {\textit{D}}}}\) :

Diffusivity tensor

\(D_{ii}\) :

Diagonal components of the diffusivity tensor

\({{\textsf {\textit{D}}}}^k\) :

Knudsen diffusivity tensor

\(D_{ii}^k\) :

Diagonal components of the Knudsen diffusivity tensor

\(D^m\) :

Binary diffusivity or self-diffusivity in the bulk fluid

\(d_s\) :

Diameter of cylindrical pellet

E :

“Energy” of the digitised system (6)

\(e_0\) :

Contribution to E

\(e_1\) :

Contribution to E

\(e_2\) :

Contribution to E

g :

Gradient amplitude

\(g_m\) :

Maximum gradient amplitude

\(g_r\) :

Reading gradient amplitude

\(h_s\) :

Height of cylindrical pellet

\(\mathscr {I}^{(v)}\) :

Phase (indicator) function for the void phase

\(\mathscr {I}^{\mathscr {K}}_i\) :

Indicator function of percolation along direction i

\({\mathscr {L}}^{(s)}\) :

Lineal-path function for the solid phase

\({\mathscr {L}}^{(v)}\) :

Lineal-path function for the void phase

\(l_i\) :

Number of voxels in \({\mathbb {V}}\) measured along direction i

\({\mathbb {M}}\) :

Cubic measurement cell related to the local percolation theory

M :

Molar mass of a gas

\(m_t\) :

Total number of \({\mathbb {M}}\) randomly thrown into \({\mathbb {V}}\)

\(m_o\) :

Number of FPC octants occupied by a fluid

\(n_d\) :

Number of spatial dimensions

P :

Pressure

\({\mathscr {P}}\) :

Pore-size probability density function

\({\mathscr {Q}}_i\) :

Total fraction of measurement cells percolating along direction i

R :

Gas constant (here 8.31441 J mol\(^{-1}\) K\(^{-1}\))

\(\mathbf {r}\) :

Position vector associated with the random walker

\(r_i\) :

Component of \(\mathbf {r}\)

\({\mathscr {S}}_1^{(v)}\) :

One-point probability function for the void phase

\({\mathscr {S}}_2^{(s)}\) :

Two-point probability function for the solid phase

\({\mathscr {S}}_2^{(v)}\) :

Two-point probability function for the void phase

\({\mathscr {S}}_n^{(v)}\) :

n-point probability function for the void phase

s :

Pore wall area per unit volume of \({\mathbb {V}}\)

\(s_e\) :

BET-specific surface area (per unit volume of \({\mathbb {V}}\))

T :

Thermodynamic temperature

t :

Time

\(t_1\) :

Longitudinal relaxation time

\(\mathbf {u}\) :

Vector of relative displacement \(\mathbf {u} = \mathbf {x}_2 - \mathbf {x}_1\)

u :

Length of a line segment, \(u = |\mathbf {u}|\)

\(\mathbf {V}\) :

Macroscopic velocity vector

\({\mathbb {V}}\) :

Convex region of space filled by the medium

\(V_{ Hg }\) :

Specific pore volume invaded by mercury

\(\mathbf {v}\) :

Vector of walker’s velocity (thermal velocity of a gas molecule)

\(\mathbf {x}\) :

Position vector associated with \(\mathscr {I}^{(v)}\) and \({\mathbb {V}}\)

\(\beta _{ii}\) :

Main diagonal component of the effective permeability tensor

\(\bar{\beta }\) :

Average value of \(\beta _{ii}\)

\(\beta _e\) :

Effective permeability determined experimentally

\(\varDelta \) :

Amount of time separating the gradient pulses

\(\delta \) :

Local radius of pore space

\(\delta _n\) :

Duration of rectangular gradient pulses

\(\varepsilon \) :

Half size of the first-passage cube

\(\zeta \) :

Parameter of the stochastic reconstruction algorithm

\(\eta \) :

Parameter of the merit function (6)

\(\kappa _{ii}\) :

Main diagonal component of the effective pore-size tensor

\(\bar{\kappa }\) :

Average value of \(\kappa _{ii}\)

\(\kappa _e\) :

Effective pore size determined experimentally

\(\varLambda \) :

Side length of \({\mathbb {M}}\)

\({\upmu }\) :

Fluid viscosity

\({\varvec{\xi }}\) :

Displacement vector associated with the random walker

\(\xi _i\) :

Component of \(\varvec{{\xi }}\)

\(\rho \) :

Bulk density of a porous solid

\(\varrho \) :

Surface relaxivity

\(\tau _e\) :

Amount of time needed for walker’s motion in the heterogeneous FPC

\(\tau _o\) :

Amount of time needed for walker’s motion in the homogeneous FPC

\(\tau _n\) :

Echo time

\(\phi _v\) :

Void volume fraction (porosity)

\(\phi _{ve}\) :

Porosity estimated from bulk and skeletal densities

\(\psi _{ii}\) :

Main diagonal component of the geometric factor tensor

\(\bar{\psi }\) :

Average value of \(\psi _{ii}\)

\(\psi _e\) :

Geometric factor determined experimentally

\(\omega \) :

Parameter of the modified Stokes–Einstein equation (16)

References

  • Adler, P.M.: Porous media: geometry and transports. Butterworth/Heinemann, Boston (1992)

    Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Mecke, K.R.: Boolean reconstructions of complex materials: integral geometric approach. Phys. Rev. E 80(5), 051,303 (2009)

    Article  Google Scholar 

  • Bakke, S., Øren, P.E.: 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. SPE J. 2(2), 136–149 (1997)

    Article  Google Scholar 

  • Bentz, D.P., Martys, N.S.: a Stokes permeability solver for three-dimensional porous media. Tech. Rep. No. 7416, NIST, Gaithersburg, USA (2007). http://ftp.nist.gov/pub/bfrl/bentz/permsolver

  • Bergman, D.J., Dunn, K.J.: Self-diffusion in a periodic porous medium with interface absorption. Phys. Rev. E 51(4), 3401–3416 (1995)

    Article  Google Scholar 

  • Bergman, D.J., Dunn, K.J., Schwartz, L.M., Mitra, P.P.: Self-diffusion in a periodic porous medium: a comparison of different approaches. Phys. Rev. E 51(4), 3393–3400 (1995)

    Article  Google Scholar 

  • Bieniek, A., Moga, A.: An efficient watershed algorithm based on connected components. Pattern Recognit. 33(6), 907–916 (2000)

    Article  Google Scholar 

  • Biswal, B., Manwart, C., Hilfer, R.: Three-dimensional local porosity analysis of porous media. Phys. A 255(3–4), 221–241 (1998)

    Article  Google Scholar 

  • Biswal, B., Manwart, C., Hilfer, R., Bakke, S., Øren, P.E.: Quantitative analysis of experimental and synthetic microstructures for sedimentary rock. Phys. A 273(3–4), 452–475 (1999)

    Article  Google Scholar 

  • Biswal, B., Held, R.J., Khanna, V., Wang, J., Hilfer, R.: Towards precise prediction of transport properties from synthetic computer tomography of reconstructed porous media. Phys. Rev. E 80(4), 041,301 (2009)

    Article  Google Scholar 

  • Čapek, P., Hejtmánek, V., Brabec, L., Zikánová, A., Kočiřík, M.: Stochastic reconstruction of particulate media using simulated annealing: improving pore connectivity. Transp. Porous Media 76(2), 179–198 (2009)

    Article  Google Scholar 

  • Čapek, P., Hejtmánek, V., Kolafa, J., Brabec, L.: Transport properties of stochastically reconstructed porous media with improved pore connectivity. Transp. Porous Media 88(1), 87–106 (2011)

    Article  Google Scholar 

  • Čapek, P., Veselý, M., Bernauer, B., Sysel, P., Hejtmánek, V., Kočiřík, M., Brabec, L., Prokopová, O.: Stochastic reconstruction of mixed-matrix membranes and evaluation of effective permeability. Comput. Mater. Sci. 89, 142–156 (2014a)

    Article  Google Scholar 

  • Čapek, P., Veselý, M., Hejtmánek, V.: On the measurement of transport parameters of porous solids in permeation and Wicke–Kallenbach cells. Chem. Eng. Sci. 118, 192–207 (2014b)

    Article  Google Scholar 

  • Chan, Kim I., Torquato, S.: Determination of the effective conductivity of heterogeneous media by Brownian motion simulation. J. Appl. Phys. 68(8), 3892–3903 (1990)

    Article  Google Scholar 

  • Chan, Kim I., Cule, D., Torquato, S.: Comment on “Walker diffusion method for calculation of transport properties of composite materials”. Phys. Rev. E 61(4), 4659–4660 (2000)

    Article  Google Scholar 

  • Coker, D.A., Torquato, S.: Simulation of diffusion and trapping in digitized heterogeneous media. J. Appl. Phys. 77(3), 955–964 (1995)

    Article  Google Scholar 

  • Dullien, F.A.L.: Porous media: fluid transport and pore structure, 2nd edn. Academic Press, San Diego (1992)

    Google Scholar 

  • Flannery, B.P., Deckman, H.W., Roberge, W.G., D’Amico, K.L.: Three-dimensional x-ray microtomography. Science 237(4821), 1439–1444 (1987)

    Article  Google Scholar 

  • Fredrich, J.T., Menendez, B., Wong, T.F.: Imaging the pore structure of geomaterials. Science 268(5208), 276–279 (1995)

    Article  Google Scholar 

  • Gerke, K.M., Karsanina, M.V., Vasilyev, R.V., Mallants, D.: Improving pattern reconstruction using directional correlation functions. EPL 106(6), 66,002 (2014)

    Article  Google Scholar 

  • Gonzalez, R.C., Woods, R.E.: Digital image processing, 3rd edn. Pearson Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  • Haynes Jr, H.W.: The experimental evaluation of catalysts effective diffusivity. Catal. Rev. Sci. Eng. 30(4), 563–627 (1988)

    Article  Google Scholar 

  • Hidajat, I., Singh, M., Cooper, J., Mohanty, K.K.: Permeability of porous media from simulated NMR response. Transp. Porous Media 48(2), 225–247 (2002)

    Article  Google Scholar 

  • Hilfer, R.: Local porosity theory and stochastic reconstruction for porous media. In: Mecke, K., Stoyan, D. (eds.) Statistical physics and spatial statistics, lecture notes in physics, vol. 254, pp. 203–241. Springer, Berlin (2000)

    Chapter  Google Scholar 

  • Hilfer, R., Manwart, C.: Permeability and conductivity for reconstruction models of porous media. Phys. Rev. E 64(2), 021,304 (2001)

    Article  Google Scholar 

  • Hürlimann, M.D., Helmer, K.G., Latour, L.L., Sotak, C.H.: Restricted diffusion in sedimentary rocks. Determination of surface-area-to-volume ratio and surface relaxivity. J. Magn. Reson. A 111(2), 169–178 (1994)

    Article  Google Scholar 

  • Ioannidis, M.A., Kwiecien, M.J., Chatzis, I.: Electrical conductivity and percolation aspects of statistically homogeneous porous media. Transp. Porous Media 29, 61–83 (1997)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions: basic principles. Phys. Rev. E 76(3), 031,110 (2007)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. Phys. Rev. E 77(3), 031,135 (2008)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: A superior descriptor of random textures and its predictive capacity. Proc. Natl. Acad. Sci. USA 106(42), 17,634–17,639 (2009)

    Article  Google Scholar 

  • Jin, G., Torres-Verdín, C., Toumelin, E.: Comparison of NMR simulations of porous media derived from analytical and voxelized representations. J. Magn. Reson. 200(2), 313–320 (2009)

    Article  Google Scholar 

  • Kainourgiakis, M.E., Kikkinides, E.S., Steriotis, T.A., Stubos, A.K., Tzevelekos, K.P., Kanellopoulos, N.K.: Structural and transport properties of alumina porous membranes from process-based and statistical reconstruction techniques. J. Colloid Interface Sci. 231, 158–167 (2000)

    Article  Google Scholar 

  • Kikkinides, E.S., Politis, M.G.: Linking pore diffusivity with macropore structure of zeolite adsorbents. Part I: three dimensional structural representation combining scanning electron microscopy with stochastic reconstruction methods. Adsorption 20(1), 5–20 (2014a)

    Article  Google Scholar 

  • Kikkinides, E.S., Politis, M.G.: Linking pore diffusivity with macropore structure of zeolite adsorbents. Part II: simulation of pore diffusion and mercury intrusion in stochastically reconstructed zeolite adsorbents. Adsorption 20(1), 21–35 (2014b)

    Article  Google Scholar 

  • Latour, L.L., Mitra, P.P., Kleinberg, R.L., Sotak, C.H.: Time-dependent diffusion coefficient of fluids in porous media as a probe of surface-to-volume ratio. J. Magn. Reson. A 101(3), 342–346 (1993)

    Article  Google Scholar 

  • Latour, L.L., Kleinberg, R.L., Mitra, P.P., Sotak, C.H.: Pore-size distributions and tortuosity in heterogeneous porous media. J. Magn. Reson. A 112(1), 83–91 (1995)

    Article  Google Scholar 

  • Levitz, P.: Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport. Adv. Colloid Interface Sci. 76–77, 71–106 (1998)

    Article  Google Scholar 

  • Lymberopoulos, D.P., Payatakes, A.C.: Derivation of topological, geometrical, and correlational properties of porous media from pore-chart analysis of serial section data. J. Colloid Interface Sci. 150(1), 61–80 (1992)

    Article  Google Scholar 

  • Mair, R.W., Wong, G.P., Hoffmann, D., Hürlimann, M.D., Patz, S., Schwartz, L.M., Walsworth, R.L.: Probing porous media with gas diffusion NMR. Phys. Rev. Lett. 83(16), 3324–3327 (1999)

    Article  Google Scholar 

  • Masschaele, B., Cnudde, V., Dierick, M., Jacobs, P., Van Hoorebeke, L., Vlassenbroeck, J.: UGCT: new X-ray radiography and tomography facility. Nucl. Instrum. Methods Phys. Res. Sect. A. Accelerators, Spectrometers, Detectors Assoc. Equip. 580(1), 266–269 (2007)

    Article  Google Scholar 

  • Masschaele, B., Dierick, M., Van Loo, D., Boone, M.N., Brabant, L., Pauwels, E., Cnudde, V., Van Hoorebeke, L.: HECTOR: a 240 kv micro-CT setup optimized for research. J. Phys. Conf. Ser. 463(012), 012 (2013)

    Google Scholar 

  • Mills, R.: Self-diffusion in normal and heavy water in the range \(1-45^{\circ }\). J. Phys. Chem. 77(5), 685–688 (1973)

    Article  Google Scholar 

  • Mitra, P.P., Sen, P.N., Schwartz, L.M.: Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys. Rev. B 47(14), 8565–8574 (1993)

    Article  Google Scholar 

  • Novák, V., Štěpánek, F., Kočí, P., Marek, M., Kubíček, M.: Evaluation of local pore sizes and transport properties in porous catalysts. Chem. Eng. Sci. 65(7), 2352–2360 (2010)

    Article  Google Scholar 

  • Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70(6), 066,135 (2004)

    Article  Google Scholar 

  • Olayinka, S., Ioannidis, M.A.: Time-dependent diffusion and surface-enhanced relaxation in stochastic replicas of porous rock. Transp. Porous Media 54(3), 273–295 (2004)

    Article  Google Scholar 

  • Øren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC 9(1), 62–66 (1979)

    Article  Google Scholar 

  • Park, I.S., Do, D.D., Rodrigues, A.E.: Measurement of the effective diffusivity in porous media by the diffusion cell method. Catal. Rev. Sci. Eng. 38(2), 189–247 (1996)

    Article  Google Scholar 

  • Price, W.S.: Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts Magn. Reson. 9(5), 299–336 (1997)

    Article  Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Poling, B.E.: The properties of gases and liquids, 4th edn. McGraw-Hill, Boston (1987)

    Google Scholar 

  • Rozman, M.G., Utz, M.: Efficient reconstruction of multiphase morphologies from correlation functions. Phys. Rev. E 63(6), 066,701 (2001)

    Article  Google Scholar 

  • Sahimi, M.: Heterogeneous materials I. Linear transport and optical properties, interdisciplinary applied mathematics, vol. 22. Springer, New York (2003)

    Google Scholar 

  • Sahimi, M.: Flow and transport in porous media and fractured rock: from classical methods to modern approaches, 2nd edn. Wiley-VCH, Weinheim (2011)

    Book  Google Scholar 

  • Sahimi, M., Stauffer, D.: Efficient simulation of flow and transport in porous media. Chem. Eng. Sci. 46(9), 2225–2233 (1991)

    Article  Google Scholar 

  • Shearing, P.R., Golbert, J., Chater, R.J., Brandon, N.P.: 3D reconstruction of SOFC anodes using a focused ion beam lift-out technique. Chem. Eng. Sci. 64(17), 3928–3933 (2009)

    Article  Google Scholar 

  • Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis, and machine vision, 2nd edn. Brooks/Cole, Pacific Grove (1999)

    Google Scholar 

  • Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001–2004 (1994)

    Article  Google Scholar 

  • Stallmach, F., Galvosas, P.: Spin echo NMR diffusion studies. In: Webb, G.A. (ed.) Annual reports on NMR spectroscopy, vol. 61, pp. 51–131. Elsevier Academic Press Inc., San Diego (2007)

    Google Scholar 

  • Stallmach, F., Kärger, J.: The potentials of pulsed field gradient NMR for investigation of porous media. Adsorption 5(2), 117–133 (1999)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Reconstruction of three-dimensional porous media using a single thin section. Phys. Rev. E 85(6), 066,709 (2012)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. Phys. Rev. Lett. 110(7), 078,002 (2013)

    Article  Google Scholar 

  • Thovert, J.F., Yousefian, F., Spanne, P., Jacquin, C.G., Adler, P.M.: Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. Phys. Rev. E 63(6), 061,307 (2001)

    Article  Google Scholar 

  • Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York (2002)

    Book  Google Scholar 

  • Torquato, S., Chan, Kim I.: Effective simulation technique to compute effective properties of heterogeneous media. Appl. Phys. Lett. 55(18), 1847–1849 (1989)

    Article  Google Scholar 

  • Torquato, S., Chan, Kim I., Cule, D.: Effective conductivity, dielectric constant, and diffusion coefficient of digitized composite media via first-passage time equations. J. Appl. Phys. 85(3), 1560–1571 (1999)

    Article  Google Scholar 

  • Toumelin, E., Torres-Verdín, C., Sun, B., Dunn, K.J.: Random-walk technique for simulating NMR measurements and 2D NMR maps of porous media with relaxing and permeable boundaries. J. Magn. Reson. 188(1), 83–96 (2007)

    Article  Google Scholar 

  • Valfouskaya, A., Adler, P.M.: Nuclear-magnetic-resonance diffusion simulations in two phases in porous media. Phys. Rev. E 72(5), 056,317 (2005)

    Article  Google Scholar 

  • Valfouskaya, A., Adler, P.M., Thovert, J.F., Fleury, M.: Nuclear-magnetic-resonance diffusion simulations in porous media. J. Appl. Phys. 97(8), 083,510 (2005)

    Article  Google Scholar 

  • Valfouskaya, A., Adler, P.M., Thovert, J.F., Fleury, M.: Nuclear magnetic resonance diffusion with surface relaxation in porous media. J. Colloid Interface Sci. 295(1), 188–201 (2006)

    Article  Google Scholar 

  • Vlassenbroeck, J., Dierick, M., Masschaele, B., Cnudde, V., Van Hoorebeke, L., Jacobs, P.: Software tools for quantification of X-ray microtomography at the UGCT. Nucl. Instrum. Methods Phys. Res. Sect. A. Accelerators Spectrometers Detectors Assoc. Equip. 580(1), 442–445 (2007a)

    Article  Google Scholar 

  • Vlassenbroeck, J., Masschaele, B., Dierick, M., Cnudde, V., De Witte, Y., Pieters, K., Van Hoorebeke, L., Jacobs, P.: Recent developments in the field of X-ray nano- and micro-CT at the centre for X-ray tomography of the Ghent university. Microsc. Microanal. 13, 184–185 (2007b)

    Google Scholar 

  • Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Article  Google Scholar 

  • Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 58(1), 495–506 (1998a)

    Article  Google Scholar 

  • Yeong, C.L.Y., Torquato, S.: Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 58(1), 224–233 (1998b)

    Article  Google Scholar 

  • Zachary, C.E., Torquato, S.: Improved reconstructions of random media using dilation and erosion processes. Phys. Rev. E 84(5), 056,102 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support (#P204/11/1206) from the Czech Science Foundation, Czech Republic is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Čapek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 442 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselý, M., Bultreys, T., Peksa, M. et al. Prediction and Evaluation of Time-Dependent Effective Self-diffusivity of Water and Other Effective Transport Properties Associated with Reconstructed Porous Solids. Transp Porous Med 110, 81–111 (2015). https://doi.org/10.1007/s11242-015-0557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0557-y

Keywords

Navigation