Skip to main content

Advertisement

Log in

Metabolomics reveals distinct methylation reaction in MeJA elicited Nigella sativa callus via UPLC–MS and chemometrics

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cell suspension cultures are now recognized as important model for studying natural products biosynthesis and functional genomics. Nevertheless, very few studies of metabolic comparisons between cell cultures (callus) and original plants have been reported, even though the biological identity of cultured cells with the normally grown plant is of great importance. In this study, an MS-based metabolomic approach was used to compare the natural products profile of intact Nigella sativa seeds versus callus . N. sativa has been used for centuries in traditional medicine for several purposes. Its phytochemical components comprise, among others, alkaloids, saponins, flavonoids and fatty acids. Ultra performance liquid chromatography coupled to ultraviolet photodiode array detection and high resolution q-TOF mass spectrometry (UPLC–PDA–MS) was utilized to analyze the secondary product metabolome of N. sativa callus, with a total of 74 metabolites including five flavonoids, 13 hydroxycinnamates, an alkaloid, saponin and 14 fatty acids. Callus maintained the capacity to produce N. sativa phenolic subclasses, with hydroxycinnamates amounting for the major secondary metabolites in callus. Alkaloids, major constituents in Nigella genus, were detected in callus though with qualitative and quantitative differences from seed tissue. Methyl jasmonate (MeJA) elicitation effect was assessed on callus with the aim of increasing secondary metabolites production. Metabolite profiles were subjected to principal component analysis and orthogonal projection to latent structures-discriminant analysis to evaluate MeJA effect. Results revealed that MeJA led to O-methylation reaction induction yielding O-feruloylquinic acid from O-caffeoylquinic acid, in addition to a methylated disaccharide. The work extends our knowledge regarding hydroxycinnamates biosynthesis, regulation and on metabolic engineering future efforts to increase its production as potential phytoalexin in N. sativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3:337–352

    Article  Google Scholar 

  • Al-Ani NK (2008) Thymol production from callus culture of Nigella sativa L. Plant Tissue Cult Biotech 18:181–185

    Google Scholar 

  • Alemi M, Sabouni F, Sanjarian F, Haghbeen K, Ansari S (2013) Anti-inflammatory effect of seeds and callus of Nigella sativa L. extracts on mix glial cells with regard to their thymoquinone content. AAPS Pharm Sci Tech 14:160–167

    Article  CAS  Google Scholar 

  • Al-Kalaf MI, Ramadan KS (2013) Antimicrobial and anticancer activity of Nigella sativa oil—a review Australian. J Basic Appl Sci Res 7:505–514

    Google Scholar 

  • Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA (2014) Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pac J Cancer Prev 15:983–987

    Article  PubMed  Google Scholar 

  • Banerjee S, Gupta S (1975) Morphogenesis in tissue cultures of different organs of Nigella sativa. Physiol Plant 33:185–187

    Article  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328

    Article  CAS  PubMed  Google Scholar 

  • Chand S, Roy SC (1979) Study of callus tissues from different parts of Nigella sativa (Ranunculaceae). Experientia 36:305–306

    Article  Google Scholar 

  • Cui L, Wang Z-Y, Zhou X-H (2013) Optimization of elicitors and precursors to enhance valtrate production in adventitious roots of Valeriana amurensis Smir. ex Kom. Plant Cell, Tissue Organ Cult 108:411–420

    Article  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballare CL (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farag MA, Wessjohann LA (2012) Metabolome classification of commercial Hypericum perforatum (St. John’s Wort) preparations via UPLC-qTOF-MS and chemometrics. Planta Med 78:488–496

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Deavours BE, de Fátima A, Naoumkina M, Dixon RA, Sumner LW (2009) Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiol 151:1096–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farag MA, EL-Ahmady S, Alian F, Wessjohann LA (2013) Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS. Phytochemistry 95:177–187

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Gad HA, Heiss AG, Wessjohann LA (2014) Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem 151:333–342

    Article  CAS  PubMed  Google Scholar 

  • Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA (2000) Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119–127

    Article  CAS  PubMed  Google Scholar 

  • Gould AR (1987) Staining and nuclear cytology of cultured cells. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 1. Academic Press, New York, pp 698–710

    Google Scholar 

  • Grata E, Boccard J, Guillarme D, Glauser G, Carrupt PA, Farmer EE, Wolfender JL, Rudaz S (2008) UPLC–TOF-MS for plant metabolomics: a sequential approach for wound marker analysis in Arabidopsis thaliana. J Chromatogr B 871:261–270

    Article  CAS  Google Scholar 

  • Guo ZJ, Lamb C, Dixon RA (1998) Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. Plant Physiol 118:1487–1494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hakkim FL, Kalyanib S, Essaa M, Girija S, Song H (2011) Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. Int J Biol Med Res 2:1070–1074

    Google Scholar 

  • Houghton PJ, Zarka R, de las Heras B, Hoult JR (1995) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med 61:33–36

    Article  CAS  PubMed  Google Scholar 

  • Kai G, Zhang Y, Chen J, Li L, Yan X, Zhang R, Liao P, Lu X, Wang W, Zhou G (2009) Molecular characterization and expression analysis of two distinct putrescine N-methyltransferases from roots of Anisodus acutangulus. Physiol Plant 135:121–129

    Article  CAS  PubMed  Google Scholar 

  • Khan MA (1999) Chemical composition and medicinal properties of Nigella sativa Linn. Inflammopharmacology 7:15–35

    Article  CAS  PubMed  Google Scholar 

  • Kumara SS, Huat BT (2001) Extraction, isolation and characterization of anti-tumour principle, α-hedrin, from the seeds of Nigella sativa. Planta Med 67:29–32

    Article  CAS  PubMed  Google Scholar 

  • Lam KC, Ibrahim RK, Behadad B, Dayanandans S (2007) Structure, function and evolution of plant O-methyltransferase. Genome 50:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinhamer PGL (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150:1567–1575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Abd El-Aty AM, Shim JH (2011) Various extraction and analytical techniques for isolation and identification of secondary metabolites from Nigella sativa seeds. Mini Rev Med Chem 11:947–955

    Article  CAS  PubMed  Google Scholar 

  • Mabry T, Markham K, Thomas M (1970) The systematic identification of flavonoids. Springer, Berlin, Heidelberg, New York, pp 230–270

    Book  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moghaddasi SM (2011) Nigella sativa traditional usages (Black seed). Adv Environ Biol 5:5–16

    Google Scholar 

  • Mondolot L, Fisca P, Buatois B, Talansier E, De Kochko A, Campa C (2006) Evolution in caffeoylquinic acid content and histolocalization during Coffea canephora leaf development. Ann Bot 98:33–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rafati S, Niakan M, Naseri M (2014) Anti-microbial effect of Nigella sativa seed extract against staphylococcal skin infection. Med J Islam Repub Iran 28:42

    PubMed Central  PubMed  Google Scholar 

  • Randhawa MA, Alghamdi MS (2011) Anticancer activity of Nigella sativa (black seed), a review. Am J Chin Med 39:1075–1091

    Article  CAS  PubMed  Google Scholar 

  • Salem ML, Hossain MS (2000) Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immun Pharmacol 22:729–740

    CAS  Google Scholar 

  • Shimada M, Fushiki H, Higuchi T (1972) O-methyltransferase activity from Japanese black pine. Phytochemistry 11:2657–2662

    Article  CAS  Google Scholar 

  • Smith CA, Want EJ, O`Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment matching, and identification. Anal Chem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  • Sultan MT, Butt MS, Karim R, Iqbal SZ, Ahmad S, Zia-Ul-Haq M, Aliberti L, Ahmad NA, Feo VD (2014) Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes mellitus. BMC Compl Altern Med 14:193

    Article  Google Scholar 

  • Sumner LW, Lei Z, Nikolau BJ, Saito K (2014) Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 32:212–229

    Article  Google Scholar 

  • Timperio AM, d’Alessandro A, Fagioni M, Magro P, Zolla L (2012) Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiol Biochem 50:65–71

    Article  CAS  PubMed  Google Scholar 

  • Xuan NT, Shumilina E, Qadri SM, Götz F, Lang F (2010) Effect of thymoquinone on mouse dendriticcells. Cell Physiol Biochem 25:307–314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Farag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, M.A., El Sayed, A.M., El Banna, A. et al. Metabolomics reveals distinct methylation reaction in MeJA elicited Nigella sativa callus via UPLC–MS and chemometrics. Plant Cell Tiss Organ Cult 122, 453–463 (2015). https://doi.org/10.1007/s11240-015-0782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0782-7

Keywords

Navigation