Skip to main content
Log in

Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2,4-dichlorophenoxyacetic acid

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The aim of the work was to recognize the effect of cadmium (Cd) and selenium (Se) onto properties of plastid lipid membranes. Plastids were isolated from wheat calli cultured during 2 weeks on Murashige–Skoog media with presence/absence of 2,4-dichlorophenoxyacetic acid. Plastids obtained in presence of 2,4-D represented an earlier developmental stage in comparison to those, got in absence of 2,4-D, which reached a pre-chloroplast stage. The studied metals were introduced to culture media separately (2 μM Na2SeO4 or 800 μM CdCl2) or together (Se + Cd). The changes of following properties of plastid envelope membrane caused by both metals were measured: composition of main lipid fractions, their fatty acid saturation, membrane fluidity, lipid peroxidation and membrane zeta potential. Results of experiments led to the conclusion that galactolipid component plays a predominant role in modification of plastid membrane properties responding to Cd and Se addition. It was shown that galactolipid protecting reaction to Cd toxic action can consists in increased plastid envelope membrane stiffness. The presence of hormone (2,4-D) and Se did not counterbalance Cd toxic effects (at least under concentration level applied in the experiments). Se applied separately can probably stimulate plastid/chloroplast transformation in wheat cells by increasing a galactolipid unsaturation degree. The zeta potentials seem to be important physicochemical parameter in determination of properties of membranes exposed to metal stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipids extraction and purification. Can J Biochem 37:911–915

    Article  PubMed  CAS  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. J Biol Chem 258:13281–13286

    PubMed  CAS  Google Scholar 

  • Cosio C, Mrtinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    Article  PubMed  CAS  Google Scholar 

  • Dafré AL, Sies H, Akerboom T (1996) Protein S-thiolation and regulation of microsomal glutathione transferase activity by the glutathione redox couple. Arch Biochem Biophys 332:288–294

    Article  PubMed  Google Scholar 

  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chaïbi W (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:358–368

    Article  PubMed  CAS  Google Scholar 

  • Felle H (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174:495–499

    Article  CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  PubMed  CAS  Google Scholar 

  • Filek M, Gzyl B, Laggner P, Kriechbaum M (2005) Effect of IAA on surface properties of the winter wheat plastid membranes. J Plant Physiol 162:245–252

    Article  PubMed  CAS  Google Scholar 

  • Filek M, Zembala M, Dudek A, Laggner P, Kriechbaum M (2007) Electric and structural studies of hormone interaction with chloroplast envelope membranes isolated from vegetative and generative rape. J Plant Physiol 164:861–867

    Article  PubMed  CAS  Google Scholar 

  • Fuchs I, Philippar K, Hedrich R (2006) Ion channels meet auxin action. Plant Biol 8:353–359

    Article  PubMed  CAS  Google Scholar 

  • Gallego SA, Kogan MJ, Azpilicueta CE, Peña C, Tomaro ML (2005) Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annuus L.) cells in response to cadmium stress. Plant Growth Regul 46:267–276

    Article  CAS  Google Scholar 

  • Germ M, Kreft I, Stibij V, Urbane-Berčič O (2007) Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiol Biochem 45:162–167

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Nava ML, Gillmor CS, Jiménez LF, Guevara-Garcia A, Leön P (2004) Chloroplast biogenesis genes act cell and non-cell autonomously in early chloroplast development. Plant Physiol 135:471–482

    Article  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1963) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  Google Scholar 

  • Inoue K (2007) The chloroplast outer envelope membrane: the edge of light and excitement. J Integr Plant Biol 49:1100–1111

    Article  Google Scholar 

  • Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Arch Environ Contam Toxicol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  • Karcz W, Kurtyka R (2007) Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Biol Plant 51:713–719

    Article  CAS  Google Scholar 

  • Kastori R, Petrović M, Petrović N (1997) Effects of excess lead, cadmium, copper and zinc on water relations in sunflower. J Plant Nutr 15:2427–2439

    Article  Google Scholar 

  • Klyachko-Gurvich GL, Tsoglin LN, Doucha J, Kopetskii J, Shebalina IB, Semenko VE (1999) Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol Plant 107:240–249

    Article  CAS  Google Scholar 

  • Krupa Z, Moniak M (1993) The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity. Plant Sci 138:149–156

    Article  Google Scholar 

  • Libik M, Konieczny R, Pater B, Ślesak I, Miszalski Z (2005) Difference in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in cultures of the ice plant. Plant Cell Rep 23:834–841

    Article  PubMed  CAS  Google Scholar 

  • McRae DG, Chambers JA, Thompson JE (1985) Senescence-related changes in photosynthetic electron transport are not due to alteration in thylacoid fluidity. Biochem Biophys Acta 810:200–208

    Article  CAS  Google Scholar 

  • Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C (1998) Lipid trafficking in plant cells. Prog Lipid Res 37:371–391

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:173–197

    Article  Google Scholar 

  • Ramos I, Esteban E, Lucena JJ, Garate A (2002) Cadmium uptake and subcellular distribution in plants of Lactica sp. Cd–Mn interactions. Plant Sci 162:761–767

    Article  CAS  Google Scholar 

  • Pagliano C, Raviolo M, Vecchia FD, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, La Rocca N (2006) Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B, Biol 84:70–78

    Article  PubMed  CAS  Google Scholar 

  • Pál M, Leskó K, Janda T, Páldi E, Szalai G (2007) Cadmium-induced changes in the membrane lipid composition of maize plants. Cereal Research Communications 35:1631–1642

    Article  CAS  Google Scholar 

  • Panković D, Plesničar M, Arsenijević-Maksimović I, Petrović N, Sakač Z, Kastori R (2000) Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann Bot 86:841–847

    Article  CAS  Google Scholar 

  • Pasternak T, Potters G, Caubergs R, Marcel AKJ (2005) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Brito RM, McLean S, Hoisington D (2004) Effect of 2,4-dichlorophenoxyacetic acid and NaCl on the establishment of callus and plant regeneration in durum and bread wheat. Plant Cell Tissue Organ Cult 77:245–250

    Article  CAS  Google Scholar 

  • Polanská L, Vićánková A, Dobrev PI, Machácková I, Vańková R (2004) Viability, ultrastructure and cytokinin metabolism of free and immobilized tobacco chloroplasts. Biotech Lett 26:1549–1555

    Article  Google Scholar 

  • Schűtzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxide system, hydrogen peroxide content, and differentiation in Scot pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Seppänen M, Turakainen M, Hartikainen H (2003) Selenium effects on oxidative stress in potato. Plant Sci 165:311–319

    Article  CAS  Google Scholar 

  • Schwertner HA, Biale JB (1973) Lipid composition of plant mitochondria and of chloroplasts. J Lipid Res 14:235–242

    PubMed  CAS  Google Scholar 

  • Shishova M, Lindberg S (2004) Auxin induces an increase of Ca2+ concentration in the cytosol of wheat leaf protoplasts. J Plant Physiol 19:937–945

    Article  CAS  Google Scholar 

  • Skoczowski A, Filek M (1994) Changes in fatty acids composition in the subcellular fraction from hypocotyls of winter rape growing at 2°C and 20°C. Plant Sci 98:127–133

    Article  CAS  Google Scholar 

  • Souza JF, Rauser WE (2003) Maize and radish sequester excess cadmium and zinc in different ways. Plant Sci 165:1009–1022

    Article  CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather then phytochelatins in the cadmium hyperacumulators Sedum alfredi. J Plant Physiol 164:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Sundaram N, Pahwa AK, Ard MD, Lin N, Perkins E, Bowles AP (2000) Selenium causes growth inhibition and apoptosis in human brain tumour cell lines. J Neuro Oncol 46:125–133

    Article  CAS  Google Scholar 

  • Szechyńska-Hebda M, Skrzypek E, Dąbrowska G, Biesaga-Kościelniak J, Filek M, Wędzony M (2007) The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol Plant 29:327–337

    Article  CAS  Google Scholar 

  • Tadino VLA, Faez JM, Christiaens LE, Kevers C, Gaspar T, Dommes J (2003) Synthesis and activity of another seleniated auxin: 2,4-dichlorophenylselenoacetic acid. Plant Growth Regul 40:197–200

    Article  CAS  Google Scholar 

  • Vassilev A, Lidon F, Scotti P, Da Graca M, Yordanov I (2004) Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plant 48:153–156

    Article  CAS  Google Scholar 

  • Verdoni N, Mench M, Cassagne C, Bessoule J-J (2001) Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ Toxicol Chem 20:382–388

    Article  PubMed  CAS  Google Scholar 

  • Welch RM, Norvell WA (1999) Mechanisms of cadmium uptake, translocation and deposition in plants. In: McLaughlin MJ, Singh A (eds) Cadmium in Solids and Plants. Kulwer Academic Publishers, The Netherlands, Dortrecht, pp 125–150

    Google Scholar 

  • Yuan H, Lan T, Lin J (2005) Modulation of nano-selenium on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons. Eng Med Biol Soc 2005:4846–4849

    Google Scholar 

  • Xue TL, Hartikainen H, Piironen V (2001) Anioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are thankful to Dr. M. Pilipowicz for assistance in the in vitro cultivation of plants. This work was partially supported by the MEiN grant No. 1 T09A 122 30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zembala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filek, M., Zembala, M., Hartikainen, H. et al. Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2,4-dichlorophenoxyacetic acid. Plant Cell Tiss Organ Cult 96, 19–28 (2009). https://doi.org/10.1007/s11240-008-9455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9455-0

Keywords

Navigation