Skip to main content
Log in

On the significance of the prior of a correct decision in committees

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

The current note clarifies why, in committees, the prior probability of a correct collective choice might be of particular significance and possibly should sometimes even be the sole appropriate basis for making the collective decision. In particular, we present sufficient conditions for the superiority of a rule based solely on the prior relative to the simple majority rule, even when the decisional skills of the committee members are assumed to be homogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The general uncertain dichotomous choice model can be used to study optimal informative voting in any voting body, Baharad et al. (2011, 2012); Ben-Yashar and Danziger (2011); Ben-Yashar and Kraus (2002); Ben-Yashar and Nitzan (1997); Nitzan (2010); Nitzan and Paroush (1982, 1985); Nurmi (2002); Shapley and Grofman (1984); Young (1995). Here both decisional skills and the prior of a correct collective decision are explicitly taken into account and, of course, the optimal rule need not be the SMR.

  2. The classical social choice problems due to the existence of heterogeneous preferences, e.g., the problem of majority tyranny, Baharad and Nitzan (2002) or the difficulty of attaining a reasonable social compromise, Young (1988, 1995), can be disregarded in our setting.

  3. CJT can be generalized to the case of heterogeneous voters. See, for example, Ben-Yashar and Zahavi (2011); Berend and Paroush (1998); Berend and Sapir (2005).

  4. Proof: As noted above,

    $$\begin{aligned} f^{*}=sign\left( \sum _{i=1}^n w x_i +\gamma \right) \end{aligned}$$

    The SMR is defined as follows:

    $$\begin{aligned} f^{SMR}=sign\left( \sum _{i=1}^n x_i\right) \end{aligned}$$

    Therefore, the SMR is optimal if

    $$\begin{aligned} \forall x\left( {\sum _{i=1}^n w x_i +\gamma >0\Leftrightarrow \sum _{i=1}^n {x_i } >0} \right) \end{aligned}$$

    Notice that for \(x\) such that the number of supporters in alternative 1 is \(\frac{n-1}{2}\),

    $$\begin{aligned}&f^{*}=sign\left( (\frac{n-1}{2}-\frac{n+1}{2})\ln \frac{p}{1-p})+\ln \frac{\alpha }{1-\alpha }\right) =sign\left( -\ln \frac{p}{1-p}+\ln \frac{\alpha }{1-\alpha }\right) =1, \\&\qquad \quad \text{ since, } \text{ by } \text{ assumption }, \alpha >p.\\&f^{\mathrm{SMR}}=sign\left( \frac{n-1}{2}-\frac{n+1}{2}\right) =-1. \text{ That } \text{ is }, f^{*}\ne f^{\mathrm{SMR}}. \end{aligned}$$

    \(\square \)

  5. Proof: Note that when \(\alpha >1/2\) , \(f^{\mathrm{PBR}}=1.\)

    $$\begin{aligned}&f^{*}=f^{\mathrm{PBR}}=1, if \forall x, \end{aligned}$$

    \(\mathop {\sum }\nolimits _{i=1}^n w x_i +\gamma >0 \quad \), and this is true for every \(x\), in particular, even for \(x=(-1,-1,-1,\ldots ,-1).\) This means that \(\gamma -nw>0\Leftrightarrow \ln \frac{\alpha }{1-\alpha }>n\ln \frac{p}{1-p}\Leftrightarrow \frac{\alpha }{1-\alpha }>(\frac{p}{1-p})^{n}\). \(\square \)

  6. For larger committees, more individuals are required to vote non-informatively to increase the probability of making the correct collective decision. In the extreme case where the PBR is the optimal rule, non-informative voting by the majority of the committee members can lead to the attainment of the maximal performance (the highest possible probability of making the correct collective choice). Clearly, strategic voting by an individual committee member is less effective than strategic voting by a subgroup of the committee members.

  7. This advantage is decreasing with \(k\) because

    $$\begin{aligned}&\left( {{\begin{array}{l} {2(k+1)} \\ {k+1} \\ \end{array} }} \right) p^{k+1}\left( {1-p} \right) ^{k+1}(\alpha -p)-\left( {{\begin{array}{l} {2k} \\ k \\ \end{array} }} \right) p^{k}\left( {1-p} \right) ^{k}(\alpha -p)<0\Leftrightarrow \\&\begin{array}{l} \\ \left( {{\begin{array}{l} {2k} \\ k \\ \end{array} }} \right) p^{k}\left( {1-p} \right) ^{k}(\alpha -p)(\frac{(2k+1)(2k+2)}{(k+1)(k+1)} p\left( {1-p} \right) -1)<0\Leftrightarrow \\ \left( {{\begin{array}{l} {2k} \\ k \\ \end{array} }} \right) p^{k}\left( {1-p} \right) ^{k}(\alpha -p)(\frac{(2k+1)2p\left( {1-p} \right) -(k+1)}{(k+1)} <0\Leftrightarrow \\ 2p\left( {1-p} \right) < \frac{k+1}{2k+1}. \\ \\ \end{array}\end{aligned}$$

References

  • Austen-Smith, D., & Banks, J. S. (1996). Information aggregation, rationality and the Condorcet Jury Theorem. American Political Science Review, 90(1), 34–45.

    Article  Google Scholar 

  • Baharad, E., Goldberger, J., Koppel, M., & Nitzan, S. (2011). Distilling the wisdom of crowds: Weighted aggregation of decisions on multiple issues. Journal of Autonomous Agents and Multi-Agent Systems, 22(1), 31–42.

    Article  Google Scholar 

  • Baharad, E., Goldberger, J., Koppel, M., & Nitzan, S. (2012). Beyond Condorcet: Optimal judgment aggregation using voting records. Theory and Decision, 72(1), 113–130.

    Article  Google Scholar 

  • Baharad, E., & Nitzan, S. (2002). Ameliorating majority decisiveness through expression of preference intensity. American Political Science Review, 96(4), 745–754.

    Article  Google Scholar 

  • Ben-Yashar, R., & Danziger, L. (2011). On the optimal allocation of committee members. Journal of Mathematical Economics, 47, 440–447.

    Article  Google Scholar 

  • Ben-Yashar, R., & Kraus, S. (2002). Optimal collective dichotomous choice under quota constraints. Economic Theory, 19, 839–852.

    Article  Google Scholar 

  • Ben-Yashar, R., & Milchtaich, I. (2007). First and second best voting rules in committees. Social Choice and Welfare, 29(3), 453–480.

    Article  Google Scholar 

  • Ben-Yashar, R., & Nitzan, S. (1997). The optimal decision rule for fixed-size committees in dichotomous choice situations: The general result. International Economic Review, 38(1), 175–186.

    Article  Google Scholar 

  • Ben-Yashar, R., & Zahavi, M. (2011). The Condorcet Jury Theorem and extension of the Franchise with rationally ignorant voters. Public Choice, 148, 435–443.

    Article  Google Scholar 

  • Berend, D., & Paroush, J. (1998). When is Condorcet’s Jury Theorem valid. Social Choice and Welfare, 15, 481–488.

    Article  Google Scholar 

  • Berend, D., & Sapir, L. (2005). Monotonicity in Condorcet Jury Theorem. Social Choice and Welfare, 24, 83–92.

    Article  Google Scholar 

  • de Condorcet, N. C. (1785). Essai sur l’application de l’analyse a la probabilite des decisions rendues a la pluralite des voix. Paris, 20, 27–32.

    Google Scholar 

  • Feddersen, T., & Pesendorfer, W. (1998). Convicting the innocent: The inferiority of unanimous Jury Verdicts under strategic voting. American Political Science Review, 92, 23–35.

    Article  Google Scholar 

  • Koppel, M., Argamon, S., & Shimon, A. L. (2012). Automatically categorizing written texts by author gender. Ramat Gan: Department of Computer Science, Bar Ilan University.

  • McLennan, A. (1998). Consequences of the Condorcet Jury Theorem for beneficial information aggregation by rational agents. American Political Science Review, 92, 413–418.

    Article  Google Scholar 

  • Miller, N. (1996). Information, individual errors, and collective performance: Empirical evidence on the Condorcet Jury Theorem. Group Decision and Negotiation, 5, 211–228.

    Article  Google Scholar 

  • Nitzan, S. (2010). Collective preference and choice. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nitzan, S., & Paroush, J. (1982). Optimal decision rules in uncertain dichotomous choice situations. International Economic Review, 23(2), 289–297.

    Article  Google Scholar 

  • Nitzan, S., & Paroush, J. (1985). Collective decision making: An economic outlook. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nurmi, H. (2002). Voting procedures under uncertainty. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Shapley, L., & Grofman, B. (1984). Optimizing group judgmental accuracy in the presence of interdependencies. Public Choice, 43, 329–343.

    Article  Google Scholar 

  • Young, P. (1988). Condorcet theory of voting. American Political Science Review, 82(4), 1231–1244.

    Article  Google Scholar 

  • Young, P. (1995). Optimal voting rules. Journal of Economic Perspectives, 9(1), 51–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Nitzan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Yashar, R., Nitzan, S. On the significance of the prior of a correct decision in committees. Theory Decis 76, 317–327 (2014). https://doi.org/10.1007/s11238-013-9362-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-013-9362-7

Keywords

Navigation