Skip to main content
Log in

A coding-aware reliable route design scheme for instantaneous recovery

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper proposes a coding-aware reliable route design scheme to tackle any single link failure for the traffic demands of all possible source destination pairs in a network. Instantaneous recovery is ensured in the proposed scheme by employing network coding (NC) based \(1+1\) protection technique. The proposed scheme considers all possible source destination pairs by creating N scenarios with k sources and a common destination (kSD) according to a given traffic matrix with unequal demands. Each of the N nodes in the network is chosen as the common destination and k nodes, where \(2\le k\le N-1\), among the remaining ones are the sources. We prove that optimum coding-aware \(1+1\) protection route design in kSD scenarios is an NP-hard problem. The proposed scheme tackles this intractable problem by choosing either two or three sources out of k sources at a time according to the largest effective gain first policy, and then routing is assigned to the selected 2SD or 3SD scenario by using our developed mathematical models. We compare the total path costs of NC based \(1+1\) protection for all possible source destination pairs, obtained by our proposed scheme, with that of the conventional \(1+1\) protection technique (without NC). Numerical results observes that 7–16 % of resource saving is achieved in our examined networks. Computation time, example scenarios, and other solution approaches for the proposed scheme are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. An example that \(\xi _{NO\_NC} > \xi _{NC}\) is included in [21].

  2. When k is even, \(W_2(k)\) is derived from, \(W_2(k)=k \atopwithdelims ()2\). When k is odd, \(W_2(k)\) is derived from \(W_2(k)=k \times W_2(k-1) = k \times k-1 \atopwithdelims ()2\). A similar computation is applicable to \(W_3(k)\).

  3. Equal traffic demands are assumed for computing optimum results, since the mathematical models for 3SD scenarios presented in this paper also assumes equal traffic demands.

References

  1. Menth, M., Duelli, M., & Milbrandt, J. (2009). Resilience analysis of packet-switched communication networks. IEEE/ACM Transactions on Networking, 17(6), 1950–1963.

  2. Zhou, D., & Subramaniam, S. (2000). Survivability in optical neteworks. IEEE Network, 14(6), 16–23.

    Article  Google Scholar 

  3. Kodialam, M., & Lakshman, T. V. (2003). Dynamic routing of bandwidth-guaranteed tunnels using aggregated network resource usage information. IEEE/ACM Transactions on Networking, 11(3), 399–410.

    Article  Google Scholar 

  4. Clouqueur, M., & Grover, W. D. (2002). Availability analysis of span-restorable mesh networks. IEEE JSAC, 20(4), 810–821.

    Google Scholar 

  5. Ahlswede, R., Cai, N., Li, S. Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.

    Article  Google Scholar 

  6. Kamal, A. E., & Al-Kofahi, O. (2011). Efficient and agile 1+N protection. IEEE Transaction on Communications, 59(1), 169–180.

    Article  Google Scholar 

  7. Kamal, A. E. (2010). 1+N network protection for mesh networks: Network coding-based protection using p-cycles. IEEE/ACM Transactions on Networking, 18(1), 67–80.

    Article  Google Scholar 

  8. Kamal, A. E., Ramamoorthy, A., Long, L., & Li, S. (2011). Overlay protection against link failures using network coding. IEEE/ACM Transactions on Networking, 19(4), 1071–1084.

    Article  Google Scholar 

  9. Aly, S. A., Kamal, A. E., & Al-Kohfahi, O. M. (2012). Network protection codes: Providing self-healing in autonomic networks using network coding. Computer Networks, 56, 99–111.

    Article  Google Scholar 

  10. Barla, I. B., Rambach, F., Schupke, D. A., & Thakur, M. (2010). Network coding for protection against multiple link failures in multi-domain networks. In Proceedings IEEE ICC’10 (pp. 1–6).

  11. Barla, I. B., Rambach, F., Schupke, D. A., & Carle, G. (2010). Efficient protection in single-domain networks using network coding. In IEEE GLOBECOM’10 (pp. 1–5).

  12. Jose, A. A., Muktadir, A. H. A., & Oki, E. (2012). Network coding aware instantaneous recovery scheme based on optimal traffic splitting. IEICE Communications Express, 1(1), 28–32.

    Article  Google Scholar 

  13. Rouayheb, S. E., Sprintson, A., & Georghiades, C. (2011). Robust network codes for unicast connections: A case study. IEEE/ACM Transactions on Networking, 19(3), 644–656.

    Article  Google Scholar 

  14. Avci, S. N., & Ayanoglu, E. (2014). Link failure recovery in large arbitrary networks via network coding. In Proceedings information theory and applications workshop (ITA 2014) (pp. 1–10).

  15. Manley, E. D., Deogun, J. S., Xu, L., & Alexander, D. R. (2010). All-optical network coding. IEEE/OSA JOCN, 2(4), 175–191.

    Google Scholar 

  16. Lun, D. S., Rantakar, N., Medard, M., Koetter, R., Karger, D. R., Ho, T., et al. (2006). Minimum-cost multicast over coded packet networks. IEEE Transactions on Information Theory, 52(6), 2608–2623.

    Article  Google Scholar 

  17. Katti, S., Rahul, H., Hu, W., Katabi, D., Medard, M., & Crowcroft, J. (2008). XORs in the air: Practical wireless network coding. IEEE/ACM Transactions on Networking, 16(3), 497–510.

    Article  Google Scholar 

  18. Al-Kofahi, O., & Kamal, A. E. (2009). Network coding-based protection of many-to-one wireless flows. IEEE JSAC, 27(5), 797–813.

    Google Scholar 

  19. Sengupta, S., Rayanchu, S., & Banerjee, S. (2010). Network coding-aware routing in wireless networks. IEEE/ACM Transactions on Networking, 18(4), 1158–1170.

    Article  Google Scholar 

  20. Xiong, C., & Li, X. (2010). Minimum cost optimization of multicast wireless networks with network coding. In Proceedings 44th CISS’10 (pp. 1–5).

  21. Muktadir, A. H. A., & Oki, E. (2014). Optimum route design in 1+1 protection with network coding for instantaneous recovery. IEICE Transactions on Communications, E97–B(1), 87–104.

    Article  Google Scholar 

  22. Belzner, M., Alexander, F., & Haunstein, H. (2009). Performance of network coding in transport networks with traffic protection. In Proceedings 2009 ITG symposium on photonic networks (pp. 1–7).

  23. Muktadir, A. H. A., & Oki, E. (2012). A mathematical model for routing in 1+1 protection with network coding for instantaneous recovery. IEICE Communications Express, 1(6), 228–233.

    Article  Google Scholar 

  24. Muktadir, A. H. A., & Oki, E. (2014). A heuristic routing algorithm for network coding aware 1+1 protection route design for instantaneous recovery. In Proceedings of the IEEE 15th international conference on high performance switching and routing (HPSR 2014) (pp. 84–89).

  25. Phong, P. V., Muktadir, A. H. A., & Oki, E. (2015). A hybrid instantaneous recovery route design scheme with two different coding aware scenarios. IEICE Communications Express, 4(1), 8–13.

    Article  Google Scholar 

  26. Oki, E. (2012). Linear programming and algorithms for communication networks. Boca Raton: CRC Press.

    Book  Google Scholar 

  27. Bhandari, R. (1999). Survivable networks: Algorithms for diverse routing. New York: Springer.

    Google Scholar 

  28. Garey, M. R., & Johnson, D. S. (1979). Computers and in- tractability: A guide to the theory of NP-completeness. New York: W.H. Freeman.

    Google Scholar 

  29. Kimelfeld, B., & Sagiv, Y. New algorithms for computing Steiner trees for a fixed number of terminals. unpublished manuscript. http://researcher.ibm.com/researcher/files/us-kimelfeld/papers-steiner06.

  30. BRITE (Boston University Representative Internet Topology Generator). http://www.cs.bu.edu/brite/.

  31. CPLEX. (2015). http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

  32. Harai, H., Furukawa, H., Fujikawa, K., Miyazawa, T., & Wada, N. (2014). Optical packet and circuit integrated networks and software defined networking extension. Journal of Lightwave Technology, 32(16), 2751–2759.

    Article  Google Scholar 

  33. Hisano, D., Maruta, A., & Kitayama, K. (2013). Demonstration of all-optical network coding by using SOA-MZI based XOR gates. In Proceedings of the OFC/NFOEC conference.

  34. An, Y., Ros, F. D., & Peucheret, C. (2013). All-optical network coding for DPSK signals. In Proceedings of the OFC/NFOEC conference.

  35. Kim, J. H., Jhon, Y. M., Byun, Y. T., Lee, S., Woo, D. H., & Kim, S. H. (2002). All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technology Letters, 12(10), 1436–1438.

    Google Scholar 

  36. Wang, Q., Zhu, G., Chen, H., Jaques, J., Leuthold, J., Piccirilli, A. B., et al. (2004). Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE Journal of Quantum Electronics, 40(6), 703–710.

    Article  Google Scholar 

  37. Wang, Y., Cheng, T. H., & Lim, M. H. (2005). A Tabu search algorithm for static routing and wavelength assignment problem. IEEE Communications Letters, 9(9), 841–843.

    Article  Google Scholar 

  38. Armaghan, M., Haghighat, A. T., & Armaghan, M. (2009) QoS multicast routing algorithms based on Tabu search with Elite candidate list. In International conference on application of information and communication technologies (AICT 2009) (pp. 1–5).

  39. Wu, Y., & Liu, W. (2013). Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks. IET Wireless Sensor Systems, 3(2), 112–118.

    Article  Google Scholar 

  40. Miguel, D., Vallejos, I., Beghelli, R. A., & Ramanj, D. (2009). Genetic algorithm for joint routing and dimensioning of dynamic WDM networks. IEEE/OSA Journal of Optical Communications and Networking, 1(7), 608–621.

  41. Zhao, Y., Sun, R., & Xu, L. (2010) An ant simulated annealing routing algorithm for wireless mesh network. In International conferences on internet technologies and applications (pp. 1–4).

  42. Lopez, A. M., & Heisterkamp, D. R. (2011). Simulated annealing based hierarchical Q-routing: A dynamic routing protocol. In 2011 Eighth international conference on information technology: New generations (ITNG) (pp. 791–796).

Download references

Acknowledgments

This work was supported in part by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C) 15K00116 and the National Institute of Information and Communications Technology, Japan. The authors would like to thank Prof. Hiro Ito for his suggestion regarding the complexity discussion of the considered network coding based \(1+1\) protection route design problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Hena Al Muktadir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Muktadir, A.H., Oki, E. A coding-aware reliable route design scheme for instantaneous recovery. Telecommun Syst 62, 495–509 (2016). https://doi.org/10.1007/s11235-015-0089-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0089-3

Keywords

Navigation