Skip to main content

Advertisement

Log in

An efficient coding approach to the debate on grounded cognition

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The debate between the amodal and the grounded views of cognition seems to be stuck. Their only substantial disagreement is about the vehicle or format of concepts. Amodal theorists reject the grounded claim that concepts are couched in the same modality-specific format as representations in sensory systems. The problem is that there is no clear characterization of (modal or amodal) format or its neural correlate. In order to make the disagreement empirically meaningful and move forward in the discussion we need a neurocognitive criterion for representational format. I argue that efficient coding models in computational neuroscience can be used to characterize modal codes: These are codes which satisfy special informational demands imposed by sensory tasks. Additionally, I examine recent studies on neural coding and argue that although they do not provide conclusive evidence for either the grounded or the amodal views, they can be used to determine what predictions these approaches can make and what experimental and theoretical developments would be required to settle the debate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Prinz (2002) claims that concepts are copies of perceptual representations. This idea can have two different interpretations that depend on two alternative characterizations of the notion of ‘copy’ (Prinz 2002, pp. 108–109). According to one reading, copies involve instructions to reactivate representations stored in perceptual systems in the absence of external stimuli. Under this view, concepts are not strictly speaking copies because they are identified with the reactivated perceptual representations (i.e. they are not the instructions). This proposal is a version of strong grounding. Under a second reading, copies are duplicates of perceptual representations stored outside perceptual systems. This is a version of the form of weak grounding that, I will argue, is more plausible.

  2. Selective coding is often also called ‘localist’. Given that low density codes have a similar name, I will avoid using this expression.

  3. I thank an anonymous reviewer for stressing the relevance of the independence between these two distinctions.

  4. I thank an anonymous reviewer for suggesting the possibility of dedicated but non-sensory codes.

  5. Attwell and Laughlin (2001) call this code ‘sparse’. As we will see below, this expression is often used to refer to very different coding regimes. However, as I mentioned, it is relevant to distinguish between sparse and distributed coding.

  6. This is an abstract and schematic characterization of energy optimization. See Attwell and Laughlin (2001) to understand how the biochemical variables that constitute the metabolic cost of neural signalling are involved.

  7. I am indebted to an anonymous reviewer for pointing out the following shortcomings of Bower’s proposal. I will suggest that these are not irresoluble problems but only difficulties that call for further theoretical and experimental developments.

References

  • Allport, D. A. (1985). Distributed memory, modular subsystems and dysphasia. In S. K. Newman & R. Epstein (Eds.), Current perspectives in dysphasia. New York: Churchill Livingstone.

    Google Scholar 

  • Alon, U. (2007a). An introduction to systems biology: Design principles of biological circuits. Boca Raton, FL: Chapman & Hall.

    Google Scholar 

  • Alon, U. (2007b). Network motifs: Theory and experimental approaches. Nature Reviews Genetics, 8, 450–461.

    Google Scholar 

  • Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61, 183–193.

    Google Scholar 

  • Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145.

    Google Scholar 

  • Barlow, H. B. (1959). Symposium on the mechanization of thought processes (Vol. 10, pp. 535–539). London: H. M. Stationary.

    Google Scholar 

  • Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In W. A. Rosenblith (Ed.), Sensory communication (pp. 217–234). Cambridge, MA: MIT Press.

    Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–609.

    Google Scholar 

  • Barsalou, L. W. (2016). On staying grounded and avoiding Quixotic dead ends. Psychonomic Bulletin and Review, 23, 1122–1142.

    Google Scholar 

  • Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7, 84–91.

    Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1997). The ‘independent components’ of natural scenes are edge filters. Vision Research, 37, 3327–3338.

    Google Scholar 

  • Binder, J. R. (2016). In defense of abstract conceptual representations. Psychonomic Bulletin and Review, 23, 1096–1108.

    Google Scholar 

  • Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Science, 15(11), 527–536.

    Google Scholar 

  • Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural network model. Psychological Review, 113, 201–233.

    Google Scholar 

  • Bowers, J. S. (2009). On the biological plausibility of grandmother cells: Implications for neural network theories in psychology and neuroscience. Psychological Review, 116, 220–251.

    Google Scholar 

  • Bowers, J. S. (2010). More on grandmother cells and the biological implausibility of PDP models of cognition: A reply to Plaut and McClelland (2010) and Quian Quiroga and Kreiman (2010). Psychological Review, 117, 300–306.

    Google Scholar 

  • Bowers, J. S., Vankov, I. I., Damian, M. F., & Davis, C. J. (2014). Neural networks learn highly selective representations in order to overcome the superposition catastrophe. Psychological Review, 121(2), 248–261.

    Google Scholar 

  • Bowers, J. S., Vankov, I. I., Damian, M. F., & Davis, C. J. (2016). Why do some neurons in cortex respond to information in a selective manner? Insights from artificial neural networks. Cognition, 148, 47–63.

    Google Scholar 

  • Caramazza, A., & Mahon, B. Z. (2006). The organization of conceptual knowledge in the brain: The future’s past and some future directions. Cognitive Neuropsychology, 23, 13–38.

    Google Scholar 

  • Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51.

    Google Scholar 

  • Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12, 478–484.

    Google Scholar 

  • Chirimuuta, M. (2014). Minimal models and canonical neural computations: The distinctness of computational explanation in neuroscience. Synthese, 191, 127–153.

    Google Scholar 

  • Chirimuuta, M. (2017). Explanation in computational neuroscience: Causal and non-causal. British Journal for the Philosophy of Science. https://doi.org/10.1093/bjps/axw034.

    Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.

    Google Scholar 

  • Deen, B., & McCarthy, G. (2010). Reading about the actions of others: Biological motion imagery and action congruency influence brain activity. Neuropsychologia, 48, 1607–1615.

    Google Scholar 

  • Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21, 355–361.

    Google Scholar 

  • DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in auditory cortex. Journal of Neuroscience, 23, 7940–7949.

    Google Scholar 

  • Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110(3), 412–431.

    Google Scholar 

  • Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820–829.

    Google Scholar 

  • Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732–744.

    Google Scholar 

  • Eichenbaum, H. (2016). Still searching for the engram. Learning and Behavior, 44(3), 2–209.

    Google Scholar 

  • Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A. Optics and Image Science, 4, 2379–2394.

    Google Scholar 

  • Földiák, P. (2002). Sparse coding in the primate cortex. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 1064–1068). Second Edition: MIT Press.

    Google Scholar 

  • Földiák, P. (2013). Sparse and explicit neural coding. In R. Quian Quiroga & S. Panzeri (Eds.), Principles of neural coding (pp. 379–389). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Földiák, P., & Endres, D. (2008). Sparse coding. Scholarpedia, 3(1), 2984.

    Google Scholar 

  • Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.

    Google Scholar 

  • Froudarakis, E., Berens, P., Ecker, A. S., Cotton, R. J., Sinz, F. H., Yatsenko, D., et al. (2014). Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nature Neuroscience, 7, 851–857.

    Google Scholar 

  • Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: high dimensionality for higher cognition. Current Opinion in Neurobiology, 37, 66–74.

    Google Scholar 

  • Fuster, J. M. (2015). The prefrontal cortex (5th ed.). San Diego: Academic Press.

    Google Scholar 

  • Gage, N., & Hickok, G. (2005). Multiregional cell assemblies, temporal binding and the representation of conceptual knowledge in cortex: A modern theory by a “classical” neurologist, Carl Wernicke. Cortex, 41(6), 823–832.

    Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.

    Google Scholar 

  • Gill, P. R., Mizumori, S. J., & Smith, D. M. (2011). Hippocampal episode fields develop with learning. Hippocampus, 21, 1240–1249.

    Google Scholar 

  • Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48, 905–922.

    Google Scholar 

  • Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic Representation of action words in human motor and premotor cortex. Neuron, 41, 301–307.

    Google Scholar 

  • Hauk, O., & Tschentscher, N. (2013). The body of evidence: what can neuroscience tell us about embodied semantics? Frontiers in Psychology, 4, 1–14.

    Google Scholar 

  • Hillis, A. E., & Caramazza, A. (1995). Cognitive and neural mechanisms underlying visual and semantic processing: Implications from optic aphasia. Journal of Cognitive Neuroscience, 7(4), 457–478.

    Google Scholar 

  • Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain, 115(6), 1783-1806.

    Google Scholar 

  • Holtmaat, A., & Caroni, P. (2016). Functional and structural underpinnings of neuronal assembly formation in learning. Nature Neuroscience, 19, 1553–1562.

    Google Scholar 

  • Hyvarinen, A., & Hoyer, P. O. (2000). Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12, 1705–1720.

    Google Scholar 

  • Jamrozik, A., McQuire, M., Cardillo, E. R., & Chatterjee, A. (2016). Metaphor: Bridging embodiment to abstraction. Psychonomic Bulletin and Review, 23, 1080–1089.

    Google Scholar 

  • Kiefer, M., & Pulvermüller, F. (2011). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48, 805–825.

    Google Scholar 

  • Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The case for mental imagery. New York, NY: Oxford University Press.

    Google Scholar 

  • Lambon Ralph, M. (2014). Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1634), 20120392.

    Google Scholar 

  • Lambon Ralph, M., Sage, K., Jones, R., & Mayberry, E. (2010). Coherent concepts are computed in the anterior temporal lobes. Proceedings of the National Academy of Sciences of the United States of America, 107, 2717–2722.

    Google Scholar 

  • Lehky, S. R., Sejnowski, T. J., & Desimone, R. (2005). Selectivity and sparseness in the responses of striate complex cells. Vision Research, 45, 57–73.

    Google Scholar 

  • Leshinskaya, A., & Caramazza, A. (2016). For a cognitive neuroscience of concepts: Moving beyond the grounding issue. Psychonomic Bulletin and Review, 23, 991–1001.

    Google Scholar 

  • Levy, W. B., & Baxter, R. A. (1996). Energy-efficient neural codes. Neural Computation, 8, 531–543.

    Google Scholar 

  • Machery, E. (2007). Concept empiricism: A methodological critique. Cognition, 104(1), 19–46.

    Google Scholar 

  • Machery, E. (2009). Doing without concepts. Oxford: Oxford University Press.

    Google Scholar 

  • Machery, E. (2016). The amodal brain and the offloading hypothesis. Psychonomic Bulletin and Review, 23(4), 1090–1095.

    Google Scholar 

  • Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30, 420–429.

    Google Scholar 

  • Manns, J. R., Howard, M., & Eichenbaum, H. (2007). Gradual changes in hippocampal activity support remembering the order of events. Neuron, 56, 530–540.

    Google Scholar 

  • Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 262(841), 23–81.

    Google Scholar 

  • Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25–45.

    Google Scholar 

  • Martin, A. (2009). Circuits in mind: The neural foundations for object concepts. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (4th ed., pp. 1031–1045). Cambridge, MA: MIT Press.

    Google Scholar 

  • Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin and Review, 23, 979–990.

    Google Scholar 

  • Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270, 102–105.

    Google Scholar 

  • McCaffrey, J., & Machery, E. (2012). Philosophical issues about concepts. Wiley Interdisciplinary Reviews: Cognitive Science, 3(2), 265–279.

    Google Scholar 

  • McDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71, 737–749.

    Google Scholar 

  • Mély, D. A., & Serre, T. (2017). Towards a theory of computation in the visual cortex. In Q. Zhao (Ed.), Computational and cognitive neuroscience of vision. Cognitive science and technology (pp. 59–84). Singapore: Springer.

    Google Scholar 

  • Meteyard, L., Rodriguez-Cuadrado, S., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48, 788–804.

    Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.

    Google Scholar 

  • Muzzio, I. A., Levita, L., Kulkarni, J., Monaco, J., Kentros, C., Stead, M., et al. (2009). Attention enhances the retrieval and stability of visuospatial and olfactory representations in the dorsal hippocampus. PLoS Biology, 7(6), e1000140. https://doi.org/10.1371/journal.pbio.1000140.

    Google Scholar 

  • Neininger, B., & Pulvermüller, F. (2003). Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia, 41, 53–70.

    Google Scholar 

  • Nieder, A. (2016). The neuronal code for number. Nature Reviews Neuroscience, 17, 366–382.

    Google Scholar 

  • O’Reilly, R. C., & Busby, R. S. (2001). Generalizable relational binding from coarse-coded distributed representations. Advances in Neural Information Processing Systems, 14, 75–82.

    Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.

    Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Google Scholar 

  • Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14(4), 481–487.

    Google Scholar 

  • Page, M. P. A. (2000). Connectionist modeling in psychology; A localist manifesto. Behavioral and Brain Sciences, 23, 443–467.

    Google Scholar 

  • Palm, G., Knoblauch, A., Hauser, F., & Schüz, A. (2014). Cell assemblies in the cerebral cortex. Biological Cybernetics, 108, 559–572.

    Google Scholar 

  • Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321, 1322–1327.

    Google Scholar 

  • Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. I., & Laurent, G. (2002). Oscillations and sparsening of odor representations in the mushroom body. Science, 297, 359–365.

    Google Scholar 

  • Piazza, M., Mechelli, A., Price, C. J., & Butterworth, B. (2006). Exact and approximate judgements of visual and auditory numerosity: An fMRI study. Brain Research, 1106, 177–188.

    Google Scholar 

  • Plaut, D. C., & McClelland, J. L. (2010). Locating object knowledge in the brain: Comment on Bowers’s (2009) attempt to revive the grandmother cell hypothesis. Psychological Review, 117, 284–288.

    Google Scholar 

  • Prinz, J. (2002). Furnishing the mind: Concepts and their perceptual basis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pulvermüller, F. (1999). Words in the brain’s language. Behavioral and Brain Sciences, 22, 253–336.

    Google Scholar 

  • Pulvermüller, F. (2001). Brain reflections of words and their meaning. Trends in Cognitive Sciences, 5, 517–524.

    Google Scholar 

  • Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576–582.

    Google Scholar 

  • Pulvermüller, F. (2013). Semantic embodiment, disembodiment or misembodiment? In search of meaning in modules and neuron circuits. Brain and Languag, 127, 86–103.

    Google Scholar 

  • Pylyshyn, Z. (2003). Return of the mental image: Are there really pictures in the brain? Trends in Cognitive Sciences, 7, 113–118.

    Google Scholar 

  • Quian Quiroga, R., & Panzeri, S. (2009). Extracting information from neural populations: Information theory and decoding approaches. Nature Reviews Neuroscience, 10, 173–185.

    Google Scholar 

  • Quian Quiroga, R., & Panzeri, S. (2013). Principles of neural coding. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Quiroga, R., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435, 1102–1107.

    Google Scholar 

  • Reilly, J., Peelle, J., Garcia, A., & Crutch, S. (2016). Linking somatic and symbolic representation in semantic memory: The dynamic multilevel reactivation framework. Psychonomic Bulletin and Review, 23, 1002–1014.

    Google Scholar 

  • Reynolds, J. (2009). Canonical neural computation: A summary and a roadmap. A Workshop at Villa La Pietra, Florence, 17–19 April 2009.

  • Rigotti, M., Barak, O., Warden, M. R., Wang, X., Daw, N. D., Miller, E. K., et al. (2013). The importance of mixed selectivity in complex cognitive tasks. Nature, 497, 585–590.

    Google Scholar 

  • Rogers, T. T., & McClelland, J. L. (2014). Parallel distributed processing at 25: Further explorations in the microstructure of cognition. Cognitive Science, 38, 1024–1077.

    Google Scholar 

  • Saygin, A. P., McCullough, S., Alac, M., & Emmorey, K. (2010). Modulation of BOLD response in motion-sensitive lateral temporal cortex by real and fictive motion sentences. Journal of Cognitive Neuroscience, 22, 2480–2490.

    Google Scholar 

  • Shallice, T., & Cooper, R. (2013). Is there a semantic system for abstract words? Frontiers in Human Neuroscience, 7, 1–10.

    Google Scholar 

  • Shen-Orr, S. S., Milo, R., Mangan, S., & Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31, 64–68.

    Google Scholar 

  • Smith, F. W., & Goodale, M. A. (2015). Decoding visual object categories in early somatosensory cortex. Cerebral Cortex, 25, 1020–1031.

    Google Scholar 

  • Sokoloff, L. (1989). Circulation and energy metabolism of the brain. In G. J. Siegel, W. Agranoff, R. W. Albers, & P. B. Molinoff (Eds.), Basic neurochemistry: Molecular, cellular, and medical aspects (4th ed., pp. 565–590). New York: Raven Press.

    Google Scholar 

  • Solomon, K. O., & Barsalou, L. W. (2001). Representing properties locally. Cognitive Psychology, 43, 129–169.

    Google Scholar 

  • Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78, 364–375.

    Google Scholar 

  • Stopfer, M. (2007). Olfactory processing: Massive convergence onto sparse codes. Current Biology, 17, R363–R364.

    Google Scholar 

  • Swindale, N. V. (2008). Visual map. Scholarpedia, 3(6), 4607.

    Google Scholar 

  • Thorpe, S. (1995). Localized versus distributed representations. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks. London: MIT Press.

    Google Scholar 

  • Ustione, A., & Piston, D. W. (2011). A simple introduction to multiphoton microscopy. Journal of Microscopy, 243, 221–226.

    Google Scholar 

  • van Hateren, J. H., & Ruderman, D. L. (1998). Independent component analysis of natural image sequences yields spatiotemporal filters similar to simple cells in primary visual cortex. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265, 2315–2320.

    Google Scholar 

  • van Hateren, J. H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265, 359–366.

    Google Scholar 

  • Vergara, J., Rivera, N., Rossi-Pool, R., & Romo, R. (2016). A neural parametric code for storing information of more than one sensory modality in working memory. Neuron, 89, 54–62.

    Google Scholar 

  • Von der Malsburg, C. (1986). Am I thinking assemblies? In G. Palm & A. Aertsen (Eds.), Brain theory. Berlin: Springer.

    Google Scholar 

  • Warrington, E. K. (1975). The selective impairment of semantic memory. The Quarterly Journal of Experimental Psychology, 27, 635–657.

    Google Scholar 

  • Weiskopf, D. (2009). The plurality of concepts. Synthese, 169, 145–173.

    Google Scholar 

  • Willmore, B. D., Mazer, J. A., & Gallant, J. L. (2011). Sparse coding in striate and extrastriate visual cortex. Journal of Neurophysiology, 105, 2907–2919.

    Google Scholar 

  • Willmore, B., & Tolhurst, D. J. (2001). Characterizing the sparseness of neural codes. Network, 12, 255–270.

    Google Scholar 

  • Wittgenstein, L. (1919). Tractatus Logico-philosophicus (D. Pears & B. McGuinness, Trans.). London: Routledge.

  • Woolgar, A., Hampshire, A., Thompson, R., & Duncan, J. (2011). Adaptive coding of task-relevant information in human frontoparietal cortex. Journal of Neuroscience, 31, 14592–14599.

    Google Scholar 

  • Wu, L. L. (1995). Perceptual representation in conceptual combination. Doctoral dissertation. University of Chicago.

  • Zwaan, R. (2014). Embodiment and language comprehension: Reframing the discussion. Trends in Cognitive Sciences, 18, 229–234.

    Google Scholar 

Download references

Acknowledgements

I would like to thank the members of the Research Group on Cognition, Language and Perception (CLP) from Buenos Aires (Liza Skidelsky, Mariela Destéfano, Sergio Barberis, Sabrina Haimovici, Nicolás Serrano, Fernanda Velázquez Coccia and Cristial Stábile) for many early discussions of this material. I am also grateful to the anonymous reviewers for very helpful suggestions on crucial aspects of the manuscript. Finally, I am indebted to Julieta Picasso Cazón for ongoing support.

Funding

CONICET postdoctoral research grant (2015–2017) (Argentina) and FONDECYT postdoctoral research grant (2018–2020) (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Wajnerman Paz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajnerman Paz, A. An efficient coding approach to the debate on grounded cognition. Synthese 195, 5245–5269 (2018). https://doi.org/10.1007/s11229-018-1815-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-018-1815-7

Keywords

Navigation