Skip to main content
Log in

The epistemic goal of a concept: accounting for the rationality of semantic change and variation

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The discussion presents a framework of concepts that is intended to account for the rationality of semantic change and variation, suggesting that each scientific concept consists of three components of content: (1) reference, (2) inferential role, and (3) the epistemic goal pursued with the concept’s use. I argue that in the course of history a concept can change in any of these components, and that change in the concept’s inferential role and reference can be accounted for as being rational relative to the third component, the concept’s epistemic goal. This framework is illustrated and defended by application to the history of the gene concept. It is explained how the molecular gene concept grew rationally out of the classical gene concept despite a change in reference, and why the use and reference of the contemporary molecular gene concept may legitimately vary from context to context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baranov P. V., Gurvich O. L., Hammer A. W., Gesteland R. F., Atkins J. F. (2003) Recode. Nucleic Acids Research 31: 87–89

    Article  Google Scholar 

  • Beadle G. W., Tatum E. (1941) Genetic control of biological reactions in Neurospora. Proceedings of the National Academy of Sciences USA 27: 499–506

    Article  Google Scholar 

  • Benzer S. (1957) The elementary units of heredity. In: McElroy W. D., Glass B. (eds) A symposium on the chemical basis of heredity. John Hopkins Press, Baltimore, pp 70–133

    Google Scholar 

  • Block, N. (1998). Semantics, conceptual role. In E. Craig (Ed.), Routledge Encyclopedia of Philosophy (Vol. 8, pp. 652–657). London: Routledge.

  • Boyd, R. (2008). Scientific realism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2008 edition). http://plato.stanford.edu/archives/fall2008/entries/scientific-realism/.

  • Brigandt I. (2003) Homology in comparitive, molecular, and evolutionary developmental biology: The radiation of a concept. Journal of Experimental Zoology (Molecular and Developmental Evolution) 299B: 9–17

    Article  Google Scholar 

  • Brigandt, I., & Love, A. C. (2008). Reductionism in biology. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2008 edition). http://plato.stanford.edu/archives/fall2008/entries/reduction-biology/.

  • Burian R. M. (2004) Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. History and Philosophy of the Life Sciences 26: 59–80

    Article  Google Scholar 

  • Burian R. M., Richardson R. C., van der Steen W. J. (1996) Against generality: Meaning in genetics and philosophy. Studies in History and Philosophy of Science 27: 1–29

    Article  Google Scholar 

  • Cappelen H., Lepore E. (2005) Insensitive semantics: A defense of semantic minimalism and speech act pluralism. Blackwell, Malden

    Google Scholar 

  • Carlson E. A. (1966) The gene: A critical history. W. B. Saunders, Philadelphia

    Google Scholar 

  • Devitt M. (1979) Against incommensurability. Australasian Journal of Philosophy 57: 29–50

    Article  Google Scholar 

  • Dorn R., Krauss V. (2003) The modifier of mdg4 locus in Drosophila: Functional complexity is resolved by trans splicing. Genetica 117: 165–177

    Article  Google Scholar 

  • Falk R. (1986) What is a gene?. Studies in the History and Philosophy of Science 17: 133–173

    Article  Google Scholar 

  • Falk R. (2000) The gene: A concept in tension. In: Beurton P. J., Falk R., Rheinberger H.-J. (eds) The concept of the gene in development and evolution. Cambridge University Press, Cambridge, pp 317–348

    Chapter  Google Scholar 

  • Falk R. (2004) Long live the genome! So should the gene. History and Philosophy of the Life Sciences 26: 105–121

    Article  Google Scholar 

  • Feyerabend P. (1962) Explanation, reduction, and empiricism. In: Feigl H., Maxwell G. (eds) Scientific explanation, space, and time (Minnesota Studies in the Philosophy of Science, vol. 3). University of Minnesota Press, Minneapolis, pp 28–97

    Google Scholar 

  • Feyerabend P. (1970) Against method. In: Radner M., Winokur S. (eds) Analyses of theories and methods of physics and psychology (Minnesota Studies in the Philosophy of Science, vol. 4). University of Minnesota Press, Minneapolis, pp 17–130

    Google Scholar 

  • Field H. (1977) Logic, meaning, and conceptual role. Journal of Philosophy 74: 379–408

    Article  Google Scholar 

  • Fine A. (1975) How to compare theories: Reference and change. Noûs 9: 17–32

    Article  Google Scholar 

  • Finta C., Warner S. C., Zaphiropoulos P. G. (2002) Intergenic mRNAs: Minor gene products or tools of diversity?. Histology and Histopathology 17: 677–682

    Google Scholar 

  • Finta C., Zaphiropoulos P. G. (2000) The human cyp2c locus: A prototype for intergenic and exon repetition splicing events. Genomics 63: 433–438

    Article  Google Scholar 

  • Fogle T. (2000) The dissolution of protein coding genes in molecular biology. In: Beurton P. J., Falk R., Rheinberger H.-J. (eds) The concept of the gene in development and evolution. Cambridge University Press, Cambridge, pp 3–25

    Chapter  Google Scholar 

  • Gelbart W. M. (1998) Databases in genomic research. Science 282: 659–661

    Article  Google Scholar 

  • Gray R. D. (1992) Death of the gene: Developmental systems strike back. In: Griffiths P. E. (eds) Trees of life: Essays in the philosophy of biology. Kluwer, Dordrecht, pp 165–210

    Google Scholar 

  • Gray M. W. (2003) Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55: 227–233

    Article  Google Scholar 

  • Griffiths P. E., Stotz K. (2007) Gene. In: Hull D. L., Ruse M. (eds) The Cambridge Companion to the Philosophy of Biology. Cambridge University Press, Cambridge, pp 85–102

    Google Scholar 

  • Harman G. (1987) (Non-solipsistic) conceptual role semantics. In: Lepore E. (eds) New directions in semantics. Academic Press, London, pp 55–81

    Google Scholar 

  • Hull D. (1974) Philosophy of biological science. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Keller E. F. (2000) The century of the gene. MIT Press, Cambridge, MA

    Google Scholar 

  • Kitcher P. (1978) Theories, theorists, and theoretical change. The Philosophical Review 87: 519–547

    Article  Google Scholar 

  • Kitcher P. (1982) Genes. British Journal for the Philosophy of Science 33: 337–359

    Article  Google Scholar 

  • Kitcher P. (1984) 1953 and all that: A tale of two sciences. The Philosophical Review 93: 335–373

    Article  Google Scholar 

  • Kitcher P. (1992) Gene: Current usages. In: Keller E. F., Lloyd E. A. (eds) Keywords in evolutionary biology. Harvard University Press, Cambridge, MA, pp 128–131

    Google Scholar 

  • Kuhn T. S. (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Leipzig J., Pevzner P., Heber S. (2004) The Alternative Splicing Gallery (ASG): Bridging the gap between genome and transcriptome. Nucleic Acids Research 13: 3977–3983

    Article  Google Scholar 

  • Magrangeas F., Pitiot G., Dubois S., Bragado-Nilsson E., Cherel M., Jobert S., Lebeau B., Boisteau O., Lethe B., Mallet J., Jacques Y., Minvielle S. (1998) Cotranscription and intergenic splicing of human galactose-1-phosphate uridylyltransferase and interleukin-11 receptor alpha-chain genes generate a fusion mRNA in normal cells: Implication for the production of multidomain proteins during evolution. Journal of Biological Chemistry 273: 16005–16010

    Article  Google Scholar 

  • Mattick J. S. (2003) Challenging the dogma: The hidden layer of non-protein-coding RNAs in complex organisms. BioEssays 25: 930–939

    Article  Google Scholar 

  • Morgan T. H., Sturtevant A. H., Muller H. J., Bridges C. B. (1915) The mechanism of Mendelian heredity. Henry Holt, New York

    Google Scholar 

  • Moss L. (2003) What genes can’t do. MIT Press, Cambridge, MA

    Google Scholar 

  • Mottus R. C., Whitehead I. P., O’Grady M., Sobel R. E., Burr R. H. L., Spiegelman G. B., Grigliatti T. A. (1997) Unique gene organization: Alternative splicing in Drosophila produces two structurally unrelated proteins. Gene 198: 229–236

    Article  Google Scholar 

  • Nersessian N. J. (1984) Faraday to Einstein: Constructing meaning in scientific theories. Kluwer, Dordrecht

    Google Scholar 

  • Neumann-Held E. M. (1999) The gene is dead – long live the gene: Conceptualising the gene the constructionist way. In: Koslowski P. (eds) Sociobiology and bioeconomics: The theory of evolution in biological and economic theory. Springer, Berlin, pp 105–137

    Google Scholar 

  • Olsson E. J., Westlund D. (2006) On the role of the research agenda in epistemic change. Erkenntnis 65: 165–183

    Article  Google Scholar 

  • Portin P. (1993) The concept of the gene: Short history and present status. The Quarterly Review of Biology 68: 173–223

    Article  Google Scholar 

  • Putnam H. (1973) Explanation and reference. In: Pearce G., Maynard P. (eds) Conceptual change. Reidel, Dordrecht, pp 199–221

    Google Scholar 

  • Rheinberger H.-J. (2000) Gene concepts: Fragments from the perspective of molecular biology. In: Beurton P. J., Falk R., Rheinberger H.-J. (eds) The concept of the gene in development and evolution. Cambridge University Press, Cambridge, pp 219–239

    Chapter  Google Scholar 

  • Sankey H. (1994) The incommensurability thesis. Avebury, Brookfield

    Google Scholar 

  • Schaffner K. F. (1969) The Watson–Crick model and reductionism. British Journal for the Philosophy of Science 20: 325–348

    Article  Google Scholar 

  • Scheffler I. (1967) Science and subjectivity. Bobbs-Merrill, Indianapolis

    Google Scholar 

  • Shapere D. (1982) Reason, reference, and the quest for knowledge. Philosophy of Science 40: 485–526

    Article  Google Scholar 

  • Sharpless N. E., DePinho R. A. (1999) The ink4a/arf locus and its two gene products. Current Opinion in Genetics and Development 9: 22–30

    Article  Google Scholar 

  • Stotz K. (2006a) Molecular epigenesis: Distributed specificity as a break in the central dogma. History and Philosophy of the Life Sciences 28: 527–544

    Google Scholar 

  • Stotz K. (2006b) With ‘genes’ like that, who needs an environment? Postgenomics’s argument for the ‘ontogeny of information’. Philosophy of Science 73: 905–917

    Article  Google Scholar 

  • Stotz K., Griffiths P. E. (2004) Genes: Philosophical analyses put to the test. History and Philosophy of the Life Sciences 26: 5–28

    Article  Google Scholar 

  • Sturtevant A. H. (1915) The behavior of the chromosomes as studied through linkage. Zeitschrift für induktive Abstammungs- und Vererbungslehre 13: 234–287

    Article  Google Scholar 

  • Vance R. E. (1996) Heroic antireductionism and genetics: A tale of one science. Philosophy of Science 63: S36–S45

    Article  Google Scholar 

  • Waters C. K. (1994) Genes made molecular. Philosophy of Science 61: 163–185

    Article  Google Scholar 

  • Waters C. K. (2000) Molecules made biological. Revue Internationale de Philosophie 4: 539–564

    Google Scholar 

  • Waters C. K. (2004) What concept analysis in philosophy of science should be (and why competing philosophical analyses of gene concepts cannot be tested by polling scientists). History and Philosophy of the Life Sciences 26: 29–58

    Article  Google Scholar 

  • Watson J. D., Crick F. H. C. (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171: 964–967

    Article  Google Scholar 

  • Weber M. (2005) Philosophy of experimental biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Yelin R., Dahary D., Sorek R., Levanon E. Y., Goldstein O., Shoshan A., Diber A., Biton S., Tamir Y., Khosravi R., Nemzer S., Pinner E., Walach S., Bernstein J., Savitsky K., Rotman G. (2003) Widespread occurrence of antisense transcription in the human genome. Nature Biotechnology 21: 379–386

    Article  Google Scholar 

  • Zhang C., Xie Y. M., Martignetti J. A., Yeo T. T., Massa S. M., Longo F. M. (2003) A candidate chimeric mammalian mRNA transcript is derived from distinct chromosomes and is associated with nonconsensus splice junction motifs. DNA and Cell Biology 22: 303–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Brigandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigandt, I. The epistemic goal of a concept: accounting for the rationality of semantic change and variation. Synthese 177, 19–40 (2010). https://doi.org/10.1007/s11229-009-9623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-009-9623-8

Keywords

Navigation