Skip to main content
Log in

Application of homotopy perturbation and variational iteration methods for nonlinear imprecise prey–predator model with stability analysis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A coupled nonlinear prey–predator system is presented. The system formulation is based on nonlinear ordinary differential equations with imprecise parameter values. In this paper, we find the equilibrium point and conduct a stability analysis of the prey–predator model using a Lyapunov functional. A comparison of our approximate analytical expressions with numerical simulation using MATLAB software is also presented. Furthermore, the proposed mathematical model is solved analytically by using the VIM and HPM for all possible parameter values in their specified ranges. Excellent agreement is noted on comparisons between the analytical and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing was not applicable to this article, as no data sets were generated or analysed during the current study.

References

  1. Lotka AJ (1925) Elements of physical biology., vol 21. Williams and Wilkins, Baltimore, p 82

    MATH  Google Scholar 

  2. Volterra V (1926) Variazioni e fluttuazioni del numero diˆaindividui in specie animali conviventi,” Mem. R. Accad. Naz. Dei Lincei, vol 2

  3. Kot M (2001) Elements of mathematical biology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  4. Smith JM, Models in ecology. CUP Arch (1978)

  5. May R (2001) M, 2nd edn. Stability and complexity in model ecosystems, Princeton University Press

    Google Scholar 

  6. Cushing JM (1984) Periodic two-predator, one-prey interactions and the time sharing of a resource niche. SIAM J Appl Math 44(2):392–410. https://doi.org/10.1137/0144026

    Article  MathSciNet  MATH  Google Scholar 

  7. Hadeler KP, Freedman HI (1989) Predator-prey populations with parasitic infection. J Math Biol 27(6):609–631. https://doi.org/10.1007/BF00276947

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen F, Chen L, Xie X (2009) On a Leslie–Gower predator-prey model incorporating a prey refuge. Nonlinear Anal Real World Appl 10(5):2905–2908. https://doi.org/10.1016/j.nonrwa.2008.09.009

    Article  MathSciNet  MATH  Google Scholar 

  9. Kar TK (2003) Selective harvesting in a prey-predator fishery with time delay. Math Comput Model 38:449–458. https://doi.org/10.1016/S0895-7177(03)90099-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Kar TK (2006) Modelling and analysis of a harvested prey-predator system incorporating a prey refuge. J Comput Appl Math 185(1):19–33. https://doi.org/10.1016/j.cam.2005.01.035

    Article  MathSciNet  MATH  Google Scholar 

  11. Kar TK, Ghorai A, Jana S (2012) Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide. J Theor Biol 310:187–198. https://doi.org/10.1016/j.jtbi.2012.06.032

    Article  MathSciNet  MATH  Google Scholar 

  12. Chakraborty K, Jana S, Kar TK (2012) Effort dynamics of a delay-induced prey-predator system with reserve. Nonlinear Dyn 70(3):1805–1829. https://doi.org/10.1007/s11071-012-0575-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Martin A, Ruan S (2001) Predator-prey models with delay and prey harvesting. J Math Biol 43(3):247–267. https://doi.org/10.1007/s002850100095

    Article  MathSciNet  MATH  Google Scholar 

  14. Kar TK, Pahari UK (2006) Non-selective harvesting in prey predator models with delay. Commun Nonlinear Sci Numer Simul 11(4):499–509. https://doi.org/10.1016/j.cnsns.2004.12.011

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang Y, Zhang Q (2011) Dynamical behavior in a delayed stage-structure population model with stochastic fluctuation and harvesting. Nonlinear Dyn 66(1–2):231–245. https://doi.org/10.1007/s11071-010-9923-z

    Article  MATH  Google Scholar 

  16. Jana S, Chakraborty M, Chakraborty K, Kar TK (2012) Global stability and bifurcation of time delayed prey-predator system incorporating prey refuge. Math Comput Simul 85:57–77. https://doi.org/10.1016/j.matcom.2012.10.003

    Article  MathSciNet  MATH  Google Scholar 

  17. Jana S, Ghorai A, Guria S, Kar TK (2015) Global dynamics of a predator, weaker prey and stronger prey system. Appl Math Comput 250:235–248. https://doi.org/10.1016/j.amc.2014.10.097

    Article  MathSciNet  MATH  Google Scholar 

  18. Pal D, Mahapatra GS, Samanta GP (2016) Stability and bionomic analysis of fuzzy prey-predator harvesting model in presence of toxicity: a dynamic approach. Bull Math Biol 78(7):1493–1519. https://doi.org/10.1007/s11538-016-0192-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Walters C, Christensen V, Fulton B, Smith ADM, Hilborn R (2016) Predictions from simple predator-prey theory about impacts of harvesting forage fishes. Ecol Model 337:272–280. https://doi.org/10.1016/j.ecolmodel.2016.07.014

    Article  Google Scholar 

  20. Das A, Pal M (2019) Theoretical analysis of an imprecise prey-predator model with harvesting and optimal control’. J Optim. https://doi.org/10.1155/2019/9512879

    Article  MathSciNet  MATH  Google Scholar 

  21. Jha PK, Ghorai S (2017) ‘Stability of prey-predator model with Holling type response function and selective Harvesting. J Appl Comput Math. https://doi.org/10.4172/2168-9679.1000358

    Article  Google Scholar 

  22. Charaborty S, Pal S (2012) Bairagi N ‘‘Predator-Prey interaction with harvesting mathematical study with biological ramifications. Appl Math Model 36:4044–4059. https://doi.org/10.1016/.apm.2011.11.029

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen KS (1981) Uniqueness of a limit cycle of a predator–prey system, SIAM. J Math Anal 12:541–548

    MathSciNet  Google Scholar 

  24. Collings JB (1995) Bifurcation and stability analysis of a temperature dependent mite predator–prey interaction model incorporating a prey refuge. Bull Math Biol 57(1):63–76

    Article  Google Scholar 

  25. Hassel MP (1978) The dynamics of anthropoid predator-prey systems. Princeton University Press, Princeton, NJ

    Google Scholar 

  26. Hofbauer J, So JWH (1990) Multiple limit cycles for predator–prey models. Math Biosci 99:71–75

    Article  MathSciNet  Google Scholar 

  27. Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 45:3–60

    Google Scholar 

  28. Senthamarai R, Vijayalakshmi T (2018) An analytical approach to top predator interference on the dynamics of a food chain model. J Phys Conf Ser 1000:012139. https://doi.org/10.1088/1742-6596/1000/1/012139

    Article  Google Scholar 

  29. He J-H (2005) Application of Homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2005.03.006

    Article  MATH  Google Scholar 

  30. He J-H (1999) Homotopy perturbation technique. Comput Method Appl Mech Eng. https://doi.org/10.1016/S0020-7462(98)00085-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Vijayalakshmi T, Senthamarai R (2019) An analytical approach to the density dependent prey-predator system with Beddington–DeAngelies functional response. AIP Conf Proc 2112:020077. https://doi.org/10.1063/1.5112262

    Article  Google Scholar 

  32. Batiha B, Noorani MSM, Hashim I (2007) Variational iteration method for solving multispecies Lotka–Volterra equations. Comput Math Appl 54:903. https://doi.org/10.1016/j.camwa.2006.12.058

    Article  MathSciNet  MATH  Google Scholar 

  33. Rafei M, Daniali H, Ganji DD (2007) Variational iteration method for solving the epidemic model and the prey and predator problem. Appl Math Comput 186:1701. https://doi.org/10.1016/j.amc.2006.08.077

    Article  MathSciNet  MATH  Google Scholar 

  34. Shakeri F, Dehghan M (2007) Numerical solution of a biological population model using He’s variational iteration method. Comput Math Appl 54:1197. https://doi.org/10.1016/j.camwa.2006.12.076

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management of the SRM Institute of Science and Technology and the Department of Mathematics of SRM IST for their constant support and encouragement to do this research. It is our pleasure to thank the referees for their valuable comments.

Funding

The SRM Institute of Science and Technology, Chennai, is greatly appreciated for providing financial help in the form of a university research fellowship (URF).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the writing of this paper. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Senthamarai.

Ethics declarations

Conflict of interest

The authors state that no conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Basic principle of the HPM

Let us consider the following equation:

$$C(u) - g(t) = 0,{\text{ t}} \in \Psi ,$$
(A.1)

with the boundary condition

$$D(\partial x/\partial n) = 0,{\text{ s}} \in \Lambda {\text{,}}$$
(A.2)

C is divided into two parts: L - a linear part and N - a nonlinear part.

Eq. (A1) can be rewritten as

$$L(x) + N(x) - g(t) = 0$$
(A.3)

We construct a homotopy of Eq. (A1) \(x(s,p):\psi \times [0,1] \to \Re\), which satisfies

$$H(x,p) = (1 - p)[L(x) - L(x_{0} )] + p[C(x) - g(t)] = 0,{\text{ p}} \in {\text{[0,1], s}} \in \Psi$$
(A.4)
$$H(x,p) = L(x) - L(x_{0} ) + pL(x_{0} ) + p[N(x) - g(t)] = 0,$$
(A.5)

where \(\rho \in [0,{\text{ }}1]\)—an embedding parameter. It follows from (A.4) and (A.5) that

$$H(s,0) = L(x) - L(x_{0} ) = 0,{\text{ H(x,1)}} = {\text{C(x) - g(t)}} = {\text{0}}$$
(A.6)

Thus, the changing process of p from zero to unity is just that of x(s, p) to x(s). In topology, L(x)-L(x0) is a deformation, and C(x)-g(t) are homotopic.

$$x = x_{0} + px_{1} + p^{2} x_{2} + ...........$$
(A.7)

The approximate solution of Eq. (A1) is

$$x = \mathop {\lim }\limits_{{p \to 1}} x = x_{0} + x_{1} + x_{2} + ........$$
(A.8)

Appendix B

Basic principle of the VIM

We consider the following differential equation:

$$L\left( x \right) + N\left( x \right) = g\left( t \right)$$
(B.1)

L (x)- linear term, N(x)- nonlinear term and g(t) - inhomogeneous term.

According to the VIM,

$$x_{{n + 1}} (t) = x_{n} (t) + \int\limits_{0}^{t} {\eta (Lx_{n} (\xi ) + N} \mathop x\limits^{\sim } (\xi ) - g(\xi ))d\xi$$
(B.2)

\(\eta\)—general Lagrangian multiplier.

The subscript n indicates the nth approximation, and \(\mathop {x_{n} }\limits^{\sim }\) is considered a restricted variation \(\mathop {\delta x_{n} }\limits^{\sim } = 0\).

Appendix C

Implementation of the model without harvesting

Estimated analytical solutions of the system of Eqs. (13) using the HPM [21,22,23]

A homotopy is constructed as follows:

$$(1 - p)\left[ {\frac{{dx}}{{dt}} - rx} \right] + p\left[ {\frac{{dx}}{{dt}} - rx + \frac{{rx^{2} }}{k} + \alpha xy} \right] = 0$$
(C.1)
$$(1 - p)\left[ {\frac{{dy}}{{dt}} + dy} \right] + p\left[ {\frac{{dy}}{{dt}} + dy - m\alpha xy + \delta y^{2} } \right] = 0$$
(C.2)
$$x_{0} \left( 0 \right) = m_{1} ;y_{0} \left( 0 \right) = m_{2} ;$$
(C.3)
$$x = x_{0} + px_{1} + p^{2} x_{2} + ........$$
(C.4)
$$y = y_{0} + py_{1} + p^{2} y_{2} + ........$$
(C.5)

By substituting Eqs. (C.4C.5) into Eqs. (C.1) and (C.2) and comparing the coefficients of the like powers of P, we obtain

$$p^{0} :\frac{{dx_{0} }}{{dt}} - rx_{0} = 0$$
(C.6)
$$p^{1} :\frac{{dx_{1} }}{{dt}} - rx_{1} + \frac{{rx_{0} ^{2} }}{k} + \alpha x_{0} y_{0} = 0$$
(C.7)
$$p^{2} :\frac{{dx_{2} }}{{dt}} - rx_{2} + \frac{{2rx_{0} x_{1} }}{k} + \alpha x_{0} y_{1} + \alpha x_{1} y_{0} = 0$$
(C.8)
$$p^{0} :\frac{{dy_{0} }}{{dy}} + dy_{0} = 0$$
(C.9)
$$p^{1} :\frac{{dy_{1} }}{{dt}} + dy_{1} - m\alpha x_{0} y_{0} + \delta y_{0} ^{2} = 0$$
(C.10)
$$p^{2} :\frac{{dy_{2} }}{{dt}} + dy_{2} - m\alpha x_{0} y_{1} - m\alpha x_{1} y_{0} + 2\delta y_{0} y_{1} = 0$$
(C.11)

By solving Eqs. (C.6C.11) with the conditions (C.3), we obtain the following solutions:

$$x_{0} (t) = m_{1} e^{{rt}}$$
(C.12)
$$y_{0} (t) = m_{2} e^{{ - dt}}$$
(C.13)
$$x_{1} (t) = \left( {\frac{{m_{1} ^{2} }}{k} - \frac{{\alpha m_{1} m_{2} }}{d}} \right)e^{{rt}} - \frac{{m_{1} ^{2} }}{k}e^{{2rt}} + \frac{{\alpha m_{1} m_{2} }}{d}e^{{(r - d)t}}$$
(C.14)
$$y_{1} (t) = \left( {\frac{{ - \alpha mm_{{_{1} }} m_{2} }}{r} - \frac{{\delta m_{2} ^{2} }}{d}} \right)e^{{ - {\text{d}}t}} + \frac{{\alpha mm_{{_{1} }} m_{2} }}{r}e^{{(r - d)t}} + \frac{{\delta m_{2} ^{2} }}{d}e^{{ - 2{\text{d}}t}}$$
(C.15)
$$\begin{gathered} x_{2} (t) = \left( \begin{gathered} \frac{{2m_{1} ^{3} }}{{k^{2} }} - \frac{{2\alpha m_{1} ^{2} m_{2} }}{{dk}} - \frac{{m_{1} ^{3} }}{{k^{2} }} + \frac{{2r\alpha m_{1} ^{2} m_{2} }}{{dk(r - d)}} + \frac{{\alpha ^{2} m_{1} ^{2} mm_{2} }}{{rd}} + \frac{{\delta \alpha m_{1} m_{2} ^{2} }}{{d^{2} }} + \hfill \\ \frac{{\alpha ^{2} mm_{1} ^{2} m_{2} }}{{r(r - d)}} - \frac{{\delta \alpha m_{1} m_{2} ^{2} }}{{2d^{2} }} - \frac{{\alpha m_{1} ^{2} m_{2} }}{{dk}} + \frac{{\alpha ^{2} m_{1} m_{2} ^{2} }}{{d^{2} }} - \frac{{\alpha m_{1} ^{2} m_{2} }}{{(r - d)k}} - \frac{{\alpha m_{1} m_{2} ^{2} }}{{2d^{2} }} \hfill \\ \end{gathered} \right)e^{{rt}} - \frac{{2m_{1} ^{3} }}{{k^{2} }}e^{{2rt}} \hfill \\ {\text{ }} + \frac{{2\alpha m_{1} ^{2} m_{2} }}{{dk}}e^{{2rt}} {\text{ }} + \frac{{m_{1} ^{3} }}{{k^{2} }}e^{{3rt}} - \frac{{2r\alpha m_{1} ^{2} m_{2} }}{{dk(r - d)}}e^{{(2r - d)t}} - \frac{{\alpha ^{2} m_{1} ^{2} mm_{2} }}{{rd}}e^{{(r - d)t}} - \frac{{\delta \alpha m_{1} m_{2} ^{2} }}{{d^{2} }}e^{{(r - d)t}} \hfill \\ {\text{ }} - \frac{{\alpha ^{2} mm_{1} ^{2} m_{2} }}{{r(r - d)}}e^{{(2r - d)t}} + \frac{{\delta \alpha m_{1} m_{2} ^{2} }}{{2d^{2} }}e^{{(r - 2d)t}} {\text{ }} + \frac{{\alpha m_{1} ^{2} m_{2} }}{{dk}}e^{{(r - d)t}} - \frac{{\alpha ^{2} m_{1} m_{2} ^{2} }}{{d^{2} }}e^{{(r - d)t}} \hfill \\ {\text{ }} + \frac{{\alpha m_{1} ^{2} m_{2} }}{{(r - d)k}}e^{{(2r - d)t}} + \frac{{\alpha m_{1} m_{2} ^{2} }}{{2d^{2} }}e^{{(r - 2d)t}} \hfill \\ \end{gathered}$$
(C.16)
$$\begin{gathered} y_{2} (t) = \left( \begin{gathered} \frac{{\alpha ^{2} m^{2} m_{{_{1} }} ^{2} m_{2} }}{{r^{2} }} + \frac{{\delta \alpha mm_{1} m_{2} }}{{rd}} - \frac{{\alpha ^{2} m^{2} m_{1} ^{2} m_{2} }}{{2r^{2} }} - \frac{{m\alpha \delta m_{1} m_{2} ^{2} }}{{d(r - d)}} - \frac{{m\alpha m_{1} ^{2} m_{2} }}{{kr}} + \frac{{m\alpha ^{2} m_{1} m_{2} ^{2} }}{{rd}} \hfill \\ + \frac{{\alpha mm_{1} ^{2} m_{2} }}{{2rk}} - \frac{{m\alpha ^{2} m_{1} m_{2} ^{2} }}{{d(r - d)}} + \frac{{2\delta \alpha mm_{1} m_{2} ^{2} }}{{rd}} + \frac{{2\delta ^{2} m_{2} ^{3} }}{{d^{2} }} + \frac{{2\delta \alpha mm_{1} m_{2} ^{2} }}{{r(r - d)}} - \frac{{\delta ^{2} m_{2} ^{3} }}{{d^{2} }} \hfill \\ \end{gathered} \right)e^{{ - {\text{d}}t}} \hfill \\ {\text{ }} - \frac{{\alpha ^{2} m^{2} m_{{_{1} }} ^{2} m_{2} }}{{r^{2} }}e^{{(r - d)t}} {\text{ }} - \frac{{\delta \alpha mm_{1} m_{2} }}{{rd}}e^{{(r - d)t}} + \frac{{\alpha ^{2} m^{2} m_{1} ^{2} m_{2} }}{{2r^{2} }}e^{{(2r - d)t}} + \frac{{m\alpha \delta m_{1} m_{2} ^{2} }}{{d(r - d)}}e^{{(r - 2d)t}} \hfill \\ {\text{ }} + \frac{{m\alpha m_{1} ^{2} m_{2} }}{{kr}}e^{{(r - d)t}} - \frac{{m\alpha ^{2} m_{1} m_{2} ^{2} }}{{rd}}e^{{(r - d)t}} {\text{ }} - \frac{{\alpha mm_{1} ^{2} m_{2} }}{{2rk}}e^{{(2r - d)t}} + \frac{{m\alpha ^{2} m_{1} m_{2} ^{2} }}{{d(r - d)}}e^{{(r - 2d)t}} \hfill \\ {\text{ }} - \frac{{2\delta \alpha mm_{1} m_{2} ^{2} }}{{rd}}e^{{ - 2dt}} - \frac{{2\delta ^{2} m_{2} ^{3} }}{{d^{2} }}e^{{ - 2{\text{d}}t}} - \frac{{2\delta \alpha mm_{1} m_{2} ^{2} }}{{r(r - d)}}e^{{(r - 2d)t}} + \frac{{\delta ^{2} m_{2} ^{3} }}{{d^{2} }}e^{{ - 3{\text{d}}t}} \hfill \\ \end{gathered}$$
(C.17)

According to the HPM, we can finalize that

$$x(t) = \mathop {\lim x(t)}\limits_{{p \to 1}} = x_{0} + x_{1} + x_{2} + .......................$$
(C.18)
$$y(t) = \mathop {\lim y(t)}\limits_{{p \to 1}} = y_{0} + y_{1} + y_{2} + .......................$$
(C.19)

After substituting Eqs. (C.11C.16) into Eqs. (C.18) and (C.19), we obtain the final solutions, which can be described in the equation in the text.

Appendix D

We drive the general solution of nonlinear equations using the VIM.

Implementation of the model without harvesting

We are given the following nonlinear differential equation:

$$L[x(t)] + N[x(t)] = g(t)$$
(D.1)

Here, L(t) is a linear operator, N(t) is a nonlinear operator, and g(t) is a given function. The variational iteration method can be established and analysed using a correct functional as follows:

$$x_{{n + 1}} (t) = x_{n} (t) + \int\limits_{0}^{t} {\varphi \{ \left[ {L[x_{n} (\tau )]} \right]} + [N[\mathop {x_{n} }\limits^{\sim } (\tau )]] - g[\tau ]\} d\tau$$
(D.2)

where \(\varphi\) is a general Lagrange multiplier, \(u_{n}\) is the net order approximate solution, and \(\tilde{u}_{n}\) denotes a restricted variation,

$${\text{i}}.{\text{e}}.,\,\psi u_{n} = 0.$$
(D.3)
$$x_{{n + 1}} (t) = x_{n} (t) + \int\limits_{0}^{t} {\varphi _{1} \{ x_{n} ^{'} (\chi ) - r} x_{n} (\chi ) + \frac{r}{k}\mathop {\left[ {x_{n} ^{2} (\chi )} \right]}\limits^{{\sim \sim \sim \sim }} + \mathop {\left[ {\alpha x_{n} (\chi )y_{n} (\chi )} \right]}\limits^{{\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim }} \} d\chi$$
(D.4)
$$y_{{n + 1}} (t) = y_{n} (t) + \int\limits_{0}^{t} {\varphi _{2} \{ y_{n} ^{'} (\chi ) - \mathop {\left[ {m\alpha x_{n} (\chi )y_{n} (\chi )} \right]}\limits^{{\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim }} + d} y_{n} (\chi ) + \mathop {\left[ {\delta y_{n} ^{2} (\chi )} \right]}\limits^{{\sim \sim \sim \sim }} \} d\chi$$
(D.5)
$$\psi x_{{n + 1}} (t) = \psi x_{n} (t) + \psi \int\limits_{0}^{t} {\varphi _{1} \{ x_{n} ^{'} (\chi ) - r} x_{n} (\chi ) + \frac{r}{k}\mathop {\left[ {x_{n} ^{2} (\chi )} \right]}\limits^{{\sim \sim \sim \sim }} + \mathop {\left[ {\alpha x_{n} (\chi )y_{n} (\chi )} \right]}\limits^{{\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim }} \} d\chi$$
(D.6)
$$\psi y_{{n + 1}} (t) = \psi y_{n} (t) + \psi \int\limits_{0}^{t} {\varphi _{2} \{ y_{n} ^{'} (\chi ) - \mathop {\left[ {m\alpha x_{n} (\chi )y_{n} (\chi )} \right]}\limits^{{\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim }} + d} y_{n} (\chi ) + \mathop {\left[ {\delta y_{n} ^{2} (\chi )} \right]}\limits^{{\sim \sim \sim \sim }} \} d\chi$$
(D.7)

where \(\varphi _{1}\) and \(\varphi _{2}\) are general Lagrange multipliers and \(x_{0}\) and \(y_{0}\) are initial approximation functions.

\(x_{n} ^{2} (\chi ),y_{n} ^{2} (\chi ){\text{ }}and{\text{ }}m\alpha x_{n} (\chi )y_{n} (\chi )\) are restricted variations,

i.e., \(\psi \mathop {x_{n} }\limits^{\sim } = 0,\psi \mathop {y_{n} }\limits^{\sim } = 0,\,and\,\psi \mathop {x_{n} }\limits^{\sim } \mathop {y_{n} }\limits^{\sim } = 0\)\(,\psi x_{n} (0) = 0,\psi y_{n} (0) = 0\,and\,\psi x_{n} (0)y_{n} (0) = 0.\)

$$\psi x_{n} :1 + \varphi _{1} (\chi )|_{{\chi = t}} = 0,\psi y_{n} :1 + \varphi _{2} (\chi )|_{{\chi = t}} = 0,$$
(D.8)
$$\psi x_{n} : - \varphi _{1} ^{'} (\chi ) - r\varphi _{1} (\chi )|_{{\chi = t}} = 0,\psi y_{n} : - \varphi _{2} ^{'} (\chi ) + d\varphi _{1} (\chi )|_{{\chi = t}} = 0$$
(D.9)
$$\varphi _{1} (\chi ) = - e^{{ - r(\chi - t)}}$$
(D.10)
$$\varphi _{2} (\chi ) = - e^{{d(\chi - t)}}$$
(D.11)

By substituting the Lagrangian multipliers and n=0 in the iteration formula,

we obtain

$$x_{1} (t) = x_{0} (t) - \int\limits_{0}^{t} {e^{{ - r(\chi - t)}} \left[ {x_{0} ^{'} (\chi ) - rx_{0} (\chi ) + \frac{r}{k}x_{0} ^{2} (\chi ) + \alpha x_{0} (\chi )y_{0} (\chi )} \right]} d\chi$$
(D.12)
$$y_{1} (t) = y_{0} (t) - \int\limits_{0}^{t} {e^{{d(\chi - t)}} \left[ {y_{0} ^{'} (\chi ) - m\alpha x_{0} (\chi )y_{0} (\chi ) + dy_{0} (\chi ) + \delta y_{0} ^{2} (\chi )} \right]} d\chi$$
(D.13)

Assuming that the initial approximate solution that satisfies the initial conditions has the form

$$x_{0} (t) = m_{1} e^{{ - rt}}$$
(D.14)
$$y_{0} (t) = m_{2} e^{{ - dt}}$$
(D.15)

by the iteration formulas (D.12) and (D.13), we derive Eqs. (10) and (11) in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, T., Senthamarai, R. Application of homotopy perturbation and variational iteration methods for nonlinear imprecise prey–predator model with stability analysis. J Supercomput 78, 2477–2502 (2022). https://doi.org/10.1007/s11227-021-03956-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03956-5

Keywords

Mathematics Subject Classification

Navigation