Skip to main content
Log in

On the iota-delta function: a link between cellular automata and partial differential equations for modeling advection–dispersion from a constant source

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Describing complex phenomena by means of cellular automata (CAs) has shown to be a very effective approach in pure and applied sciences. Most of the applications, however, rely on multidimensional CAs. For example, lattice gas CAs and lattice Boltzmann methods are widely used to simulate fluid flow and both share features with two-dimensional CAs. One-dimensional CAs, on the other hand, seem to have been neglected for modeling physical phenomena. In the present paper, we demonstrate that some one-dimensional CAs are equivalent to a stable linear finite difference scheme used to solve advection–diffusion partial differential equations (PDEs) by relying on the so-called iota-delta representation. Consequently, this work shows an important link between continuous and discrete models in general, and PDEs and CAs more in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolfram S (2002) A new kind of science. Wolfram Media, Champaign, IL

    MATH  Google Scholar 

  2. Wolfram S (1988) Complex systems theory. In: Proceedings of the founding workshops of the Santa Fe Institute, Addison-Wesley, Emerging Syntheses in Science, pp 183–189

  3. Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424

    Article  Google Scholar 

  4. Hardy J, Pomeau Y, de Pazzis O (1973) Time evolution of a two- dimensional model system. I. Invariant states and time correlation functions. J Math Phys 14(12):1746–1759

    Article  MathSciNet  Google Scholar 

  5. Succi S (2001) The lattice Boltzmann equation, for fluid dynamics and beyond. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  6. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14):1505–1508

    Article  Google Scholar 

  7. Wolfram S (1986) Cellular automaton fluids I: basic theory. J State Phys 43(3/4):471–526

    Article  MathSciNet  MATH  Google Scholar 

  8. Frisch U, d’Humières D, Hasslacher B, Lallemand P, Pomeau Y, Rivet J-P (1987) Lattice gas hydrodynamics in two and three dimensions. Complex Syst 1:649–707

    MathSciNet  MATH  Google Scholar 

  9. McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61:2332–2335

    Article  Google Scholar 

  10. de Ozelim LCSM, de Cavalcante ALB, de Borges LPF (2013) Continuum versus discrete: a physically interpretable general rule for cellular automata by means of modular arithmetic. Complex Syst 22(1):75–99

    MathSciNet  Google Scholar 

  11. Wuensche A, Lesser MJ (1992) The global dynamics of cellular automata: an Atlas of basin of attraction fields of one-dimensional cellular automata. Santa Fe Institute Studies in the Sciences of Complexity, Addison-Wesley, Reading, MA p 250

    MATH  Google Scholar 

  12. Chua L (2006) A nonlinear dynamics perspective of Wolfram’s new kind of science, vol 1. World Scientific Publishing Company, Singapore

    MATH  Google Scholar 

  13. Chua L (2007) A nonlinear dynamics perspective of Wolfram’s new kind of science, vol 2. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  14. Chua L (2009) A nonlinear dynamics perspective of Wolfram’s new kind of science, vol 3. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  15. Chua L (2011) A nonlinear dynamics perspective of Wolfram’s new kind of science, vol 4. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  16. Chua L (2012) A nonlinear dynamics perspective of Wolfram’s new kind of science, vol 5. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  17. Redeker M, Adamatzky A, Martínez GJ (2013) Expressiveness of elementary cellular automata. Int J Mod Phys C 24(3):1350010. doi:10.1142/S0129183113500101

  18. Omohundro S (1984) Modelling cellular automata with partial differential equations. Physica D 10:128–134

    Article  MathSciNet  MATH  Google Scholar 

  19. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Collection Al’ea Saclay

    Book  MATH  Google Scholar 

  20. Kunishima W, Nishiyama A, Tanaka H, Tokihiro T (2004) Differential equations for creating complex cellular automaton patterns. J Phys Soc Jpn 73:2033–2036

    Article  MathSciNet  MATH  Google Scholar 

  21. de Ozelim LCSM, Cavalcante ALB, de Borges LPF (2013) On the iota-delta function: universality in cellular automata’s representation. Complex Syst 21(4):1–12

    MathSciNet  MATH  Google Scholar 

  22. LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

    Book  MATH  Google Scholar 

  23. Najafi HS, Hajinezhad H (2008) Solving one-dimensional advection–dispersion with reaction using some finite-difference methods. Appl Math Sci 2(53):2611–2618

    MathSciNet  MATH  Google Scholar 

  24. Datta BN (1995) Numerical linear algebra and aplications. Brooks/Cole Publishing Company, Belmont, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luan Carlos de S. M. Ozelim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozelim, L.C.d.S.M., Cavalcante, A.L.B. & Baetens, J.M. On the iota-delta function: a link between cellular automata and partial differential equations for modeling advection–dispersion from a constant source. J Supercomput 73, 700–712 (2017). https://doi.org/10.1007/s11227-016-1795-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1795-7

Keywords

Navigation