Skip to main content
Log in

Coordination chemistry and bonding analysis of tetranuclear transition metal pyrene sandwich complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Geometry optimizations have been performed on the M4(Pyr)2 (M = Ti-Ni, Pd and Pt, Pyr = C16H10) complexes by means of DFT method using BP86 and mPW1PW91 functionals combined to the TZP basis set. The M4 moiety encapsulated between two pyrene ligands tends to establish M-L bonding with various hapticies from η2 to η6. In accordance with the coordination modes, the pyrene behaves as neutral, dianionic, or tetraanionic ligand. For the Ti, V, and Fe, the low-spin (S = 0) and the high-spin (S = 1) structures are isoenergetic, while the Cr, Mn, and Co structures prefer the high-spin states. The Ni, Pd, and Pt structures are more favorable in low-spin state. The zigzag metallic chain is predicted to be more stable than that of the two-dimensional sheet for the Pd complexes. The spin state changes of the studied complexes in their ground states could be characterized in some cases by different molecular structure modifications (structural isomerisation, where structural modifications accompany the spin state modification like as bonds and angles), electronic configurations (low-spin or high-spin), or oxidation states with respect to the metal charges, in agreement with the metal nature. The optimized structures obtained by both BP86 and mPW1PW91 methods are consistent to each other, where the energetic parameters follow similar tendencies regarding the stability order between isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Debad JD, Morris JC, Lynch V, Magnus P, Bard AJ (1996) J Am Chem Soc 118:2374

    Article  CAS  Google Scholar 

  2. Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley VCH, New York

    Google Scholar 

  3. Ohashi K, Kubo T, Masui T, Yamamoto K, Nakasuji K, Takui T, Kai Y, Murata I J Am Chem Soc

  4. Shibasaki T, Komine N, Hirano M, Komiya S (2006) Organometallics 25:523

    Article  CAS  Google Scholar 

  5. Bendjaballah S, Kahlal S, Costuas K, Be Villon E, Saillard J-Y (2006) Chem-Eur J 12:2048

    Article  CAS  Google Scholar 

  6. Korichi H, Zouchoune F, Zendaoui S-M, Zouchoune B, Saillard J-Y (2010) Organometallics 29:1693

    Article  CAS  Google Scholar 

  7. Farah S, Ababsa S, Benhamada N, Zouchoune B (2010) Polyhedron 29:2722

    Article  CAS  Google Scholar 

  8. Bouchakri N, Benmachiche A, Zouchoune B (2011) Polyhedron 30:2644

    Article  CAS  Google Scholar 

  9. Benmachiche A, Zendaoui SM, Bouaoud SE, Zouchoune B (2012) Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: A DFT study. Int J Quant Chem 113(7):985-996

  10. Chekkal F, Zendaoui SM, Zouchoune B, Saillard J-Y (2013) New J Chem 37:2293

    Article  CAS  Google Scholar 

  11. Merzoug M, Zouchoune B (2014) J Organomet Chem 770:69

    Article  CAS  Google Scholar 

  12. Zendaoui SM, Zouchoune B (2013) Polyhedron 51:123

    Article  CAS  Google Scholar 

  13. Murahashi T, Inoue R, Isui K, Ogoshi S (2009) J Am Chem Soc 131:9888

    Article  CAS  Google Scholar 

  14. T. Murahashi, N. Kato, T. Uemura and H. Kurosawa, Angew. Chem.Int, Ed., 46, 3509 (2007).

  15. Tatsumi T, Shirato K, Murahashi T, Ogoshi S, Kurosawa H (2006) Angew Chem 118:5931

    Article  Google Scholar 

  16. Murahashi T, Uemura T, Kurosawa H (2003) J Am Chem Soc 125:8436

    Article  CAS  Google Scholar 

  17. Ceccon A, Santi S, Orian L, Bisello A (2004) Coord Chem Rev 248:683

    Article  CAS  Google Scholar 

  18. Manriquez JM, Ward MD, Reiff WM, Calabrese JC, Jones NL, Carroll PJ, Bunel EE, Miller JS (1995) J Am Chem Soc 117:6182

    Article  CAS  Google Scholar 

  19. Esponda E, Adams C, Burgos F, Chavez I, Manriquez JM, Delpech F, Castel A, Gornitzka H, Rivière-Baudet M, Rivière P (2006) J Organomet Chem 691:3011

    Article  CAS  Google Scholar 

  20. Noodleman L, Han W-G (2006) J Biol Inorg Chem 11:674

    Article  CAS  Google Scholar 

  21. Cremer D (2001) Mol Phys 99:1899

    Article  CAS  Google Scholar 

  22. Löwdin PO (1955) Phys Rev 97:1509

    Article  Google Scholar 

  23. Lykos P, Pratt GW (1963) Rev Mod Phys 35:496

    Article  Google Scholar 

  24. Yamaguchi K (1990) Self-consistent field: theory and applications. In: Carbo R, Klobukowski M (eds) . Elsevier, Amsterdam, p. 727

    Google Scholar 

  25. Yamaguchi K, Kawakami T, Takano Y, Kitagawa Y, Yamashita Y, Fujita H (2002) Int J Quantum Chem 90:370

    Article  CAS  Google Scholar 

  26. Hehre WJ, Random L, von Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. New York, Wiley

    Google Scholar 

  27. Szabo A, Ostlund NS (1996) Modern quantum chemistry. New York, Dover Publications, Inc.

    Google Scholar 

  28. Murahashi T, Fujimoto M, Okao M, Hashimoto Y, Uemura T, Tatsumi Y, Nakao Y, Ikeda A, Sakaki S, Kurosawa H (2006) Science 313:1104

    Article  CAS  Google Scholar 

  29. Zouchoune F, Zendaoui S-M, Bouchakri N, Djedouani A, Zouchoune B (2010) J Mol Struct 945:78

    Article  CAS  Google Scholar 

  30. Farah S, Korichi H, Zendaoui SM, Saillard JY, Zouchoune B (2009) Inorg Chim Acta 362:3541

    Article  CAS  Google Scholar 

  31. Peng A, Zhang X, Li QS, King RB, Scharfer III HF (2013) New J Chem 37:775

    Article  CAS  Google Scholar 

  32. Wang H, King RB, Schaefer III HF (2008) Eur J Inorg:3698

  33. Fan Q, Feng H, Sun W, Li H, Xie Y, King RB, Scharfer III HF (2013) New J Chem 37:1545

    Article  CAS  Google Scholar 

  34. Peng A, Zhang X, Li QS, King RB, Schaefer III HF (2013) New J Chem 37(775)

  35. ADF2014.01, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, SCM

  36. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    Article  CAS  Google Scholar 

  37. te Velde G, Baerends EJ (1992) J Comput Phys 99:84

    Article  Google Scholar 

  38. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theo Chim Acc 99:391

    Google Scholar 

  39. Bickelhaupt FM, Baerends EJ (2000) Rev Comput Chem 15:1

    Article  CAS  Google Scholar 

  40. te Velde G, Bickelhaupt FM, Fonseca Guerra C, van Gisbergen SJA, Baerends EJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931

    Article  Google Scholar 

  41. Vosko SD, Wilk L, Nusair M (1990) Can J Chem 58:1200

    Google Scholar 

  42. Becke AD (1986) J Chem Phys 84:4524

    Article  CAS  Google Scholar 

  43. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  44. Perdew JP (1986) Phys Rev B 33:8822

    Article  CAS  Google Scholar 

  45. Perdew JP (1986) Phys Rev B 34:7406

    Article  CAS  Google Scholar 

  46. Adamo C, Barone V (1998) J Chem Phys 108:664

    Article  CAS  Google Scholar 

  47. van Lenthe E, Ehlers AW, Bearends EJ (1999) J Chem Phys 110:8943

    Article  Google Scholar 

  48. Versluis L, Ziegler T (1988) J Chem Phys 88:322

    Article  CAS  Google Scholar 

  49. Fan L, Ziegler T (1992) J Chem Phys 96:9005

    Article  CAS  Google Scholar 

  50. Fan L, Ziegler T (1992) J Phys Chem 96:6937

    Article  CAS  Google Scholar 

  51. P. Flükiger, H. P. Lüthi, S. Portmann, J. Weber, MOLEKEL, Version 4.3.win32 Swiss Center for Scientific Computing (CSCS), Switzerland, 2000–2001. http://www.cscs.ch/molekel/.

  52. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond order donor–acceptor perspective. Cambridge University Press, U. K.

    Book  Google Scholar 

  53. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Natural Bond Orbitals “Analysis Programs” Theoretical Chemistry Institute. University of Wisconsin, Madison, WI

    Google Scholar 

  54. B. Eliasson, T. Lejon, U. Edlund (1984) J Chem Soc Chem Commun 591

  55. Miillen K (1978) Helv Chim Acta 61:2307

    Article  Google Scholar 

  56. Dahl LF, Rundle RE (1963) Acta Cryst 16:419

    Article  CAS  Google Scholar 

  57. Wang H, Sun Z, Xie Y, King RB, Schaefer III HF (2011) Inorg Chem 50:9256

    Article  CAS  Google Scholar 

  58. Kitagawa Y, Saito T, Ito M, Shoji M, Koizumi K, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K (2007) Chem Phys Lett 442:445

    Article  CAS  Google Scholar 

  59. Kitagawa Y, Saito T, Nakanishi Y, Kataoka Y, Matsui T, Kawakami T, Okumura M, Yamaguchi K (2009) J Phys Chem A 113:15041

    Article  CAS  Google Scholar 

  60. Minsky A, Klein J, Rabinovitz M (1981) J Am Chem Soc 103:4586

    Article  CAS  Google Scholar 

  61. Farah S, Bouchakri N, Zendaoui SM, Saillard JY, Zouchoune B (2010) J Mol Struct 953:143

    Article  CAS  Google Scholar 

  62. A. Saiad, B. Zouchoune. Can. J. Chem., 93, 1096 (2015).

  63. S. Aduldecha, B. Hathaway (1991) J Chem Soc Dalton Trans 993

  64. S.-J. Shieh, C.-C. Chou, G.-H. Lee, C.-C. Wang, S.-M. Peng (1997) Angew Chem 109: 57; Angew. Chem. Int. Ed. Engl  36:56.

  65. Peng S-M, Wang C-C, Jang Y-L, Chen Y-H, Li F-Y, Mou C-Y, Leung M-K (2000) J Magn Magn Mater 209:80

    Article  CAS  Google Scholar 

  66. López X, Huang M-Y, Huang GC, Peng SM, Li FY, Bénard M, Rohmer M-M (2006) Inorg Chem 45:9075

  67. Bera JK, Dunbar KR (2002) Angew Chem Int Ed 41:4453

    Article  CAS  Google Scholar 

  68. Philpott MR, Kawazoe Y (2007) Chem Phys 337:55

    Article  CAS  Google Scholar 

  69. Murahashi T, Mochizuki E, Kai Y, Kurosawa H (1999) J Am Chem Soc 121:10 660

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Zouchoune.

Electronic supplementary material

ESM 1

Bond distances (Å), bond angles (°), and the total bonding energies (eV) for the optimized geometries of the computed compounds in their different spin states and various symmetries are given in Tables S1–S6. BP86-optimized structures are given in Figs. S1–S3, values and plots of spin densities are given in Schemes S1–S3, and MO diagram of Pd4(Pyr)2 is given in Scheme S4. (DOCX 2595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadli, S., Zouchoune, B. Coordination chemistry and bonding analysis of tetranuclear transition metal pyrene sandwich complexes. Struct Chem 28, 985–997 (2017). https://doi.org/10.1007/s11224-016-0905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0905-8

Keywords

Navigation