Skip to main content
Log in

Ab initio computational study of 1-methyl-4-silatranone and attempts at its conventional synthesis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

1-Methyl-4-silatranone could exhibit the structural aspects of a typical silatrane including a short N–Si bond distance reflecting a dative bond. But given the significant amide resonance in a [3.3.3] bridgehead bicyclic lactam, the lone pair could be shared with the carbonyl group leading to a very long N–Si bond, essentially a “non-silatrane.” Ab initio calculations (MP2/6-311 + G*) predict that ground state conformations of this molecule are best regarded as lactams rather than silatranes, the most stable having a calculated N–Si bond length of 2.902 Å and an N–CO bond length of 1.387 Å. The calculated transition state for inversion of the amide ring retains very little amide resonance (N–CO, 1.440 Å). Some of this loss is compensated through tightening of the N–Si bond (2.422 Å), leading to a net energy of activation of ca 8 kcal/mol. Attempts to synthesize 1-methyl-4-silatranone using conventional pathways successful for 1-methylsilatrane [condensations employing N,N-bis(2-hydroxyethyl)glycolamide in place of tris(2-hydroxyethyl)amine] were unsuccessful. This is due to the net loss in resonance energy of the amide reactant relative to that in the [3.3.3] system, the essential absence of the N–Si dative bond, and the rigidity introduced by the planar amide linkage in the starting material. A more likely pathway to successful synthesis should be formation of the amide linkage in the final step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Frye CL, Vogel GE, Hall JA (1961) J Am Chem Soc 83:996–997

    Article  CAS  Google Scholar 

  2. Voronkov MG (1966) Pure Appl. Chem 13:35–59

    CAS  Google Scholar 

  3. Puri JK, Singh R, Chahal VK (2011) Chem Soc Rev 40:1791–1840

    Article  CAS  Google Scholar 

  4. Hargittai I, Hargittai M (1987) In: Liebman JF, Greenberg A (eds) In molecular structure and energetics, vol. 2. Physical measurement. VCH Publishers, New York, pp. 1–35

    Google Scholar 

  5. Párkányi L, Hencsei P, Bihátsi L, Müller T (1984) J Organomet Chem 269:1–9

    Article  Google Scholar 

  6. Párkányi F, Bihátsi L, Hensei P (1978) Cryst Struct Commun 7:435–440

    Google Scholar 

  7. Lyssenko KA, Korlyukov AA, Antipin MY, Knyazev SP, Kirin VN, Alexeev NV, Chernyshev EA (2000) Mendeleev Commun 10:88–90

    Article  Google Scholar 

  8. Korlyukov AA, Antipin MY, Bolgova YI, Trofimov OM, Voronkov MG (2009) Russ Chem Bull 58:25–30

    Article  CAS  Google Scholar 

  9. Stachel SJ, Ziller JW, Van Vranken DL (1999) Tetrahedron Lett 40:5811–5812

    Article  CAS  Google Scholar 

  10. Belyakov S, Ignatovich L, Lukevics EJ (1999) J Organometal Chem 577:205–210

    Article  CAS  Google Scholar 

  11. Gordon MS, Carroll MT, Jensen JH, Davis LP, Burggraf LW, Guidry RM (1991) Organometallics 10:2657–2660

    Article  CAS  Google Scholar 

  12. Belogolova EF, Sidorkin VF (2013) J Phys Chem A 117:5365–5376

    Article  CAS  Google Scholar 

  13. Anglada JM, Bo C, Bofill JM, Crehuet R, Poblet JM (1999) Organometallics 18:5584–5593

    Article  CAS  Google Scholar 

  14. Attar-Bashi MT, Richard CEF, Roper WR, Wright LJ, Woodgate SD (1998) Organometallics 17:504–506

    Article  CAS  Google Scholar 

  15. Forgacs G, Kolonits M, Hargittai I (1990) Struct Chem 1:245–250

    Article  CAS  Google Scholar 

  16. Shen Q, Hilderbrandt RL (1980) J Molec Struct 64:257–262

    Article  CAS  Google Scholar 

  17. Shishkov IF, Khristenko LV, Rudakov FM, Golubinskii AB, Vilkov LV, Karlov SS, Zaitseva GS, Samdal S (2004) Struct Chem 15:11–16

    Article  CAS  Google Scholar 

  18. Imbenotte M, Palavit G, Legrand P (1984) J Raman Spectrosc 15:293–295

    Article  CAS  Google Scholar 

  19. Voronkov MG, Zel’bst EA, Vasil’ev AD, Molokeev MS, Kuznetsova GA (2014) Dokl Chem 458:172–175

    Article  CAS  Google Scholar 

  20. IUPAC Name (X = CH3): 1-methyl-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-4-one.

  21. Greenberg A, Moore DT, DuBois TD (1996) J Am Chem Soc 118:8658–8668 (COSNAR: “Carbonyl Substitution Nitrogen Atom Replacement”)

    Article  CAS  Google Scholar 

  22. Szostak M, Aube J (2013) Chem Rev 113:5701–5765

    Article  CAS  Google Scholar 

  23. Morgan, JP (2014) Two studies in bio-organic chemistry and toxicology. Doctoral Dissertation, University of New Hampshire, Durham, New Hampshire.

  24. Sidorkin VF, Belogolova EF, Doronina EP (2015) Phys Chem Chem Phys 17:26225–26237

    Article  CAS  Google Scholar 

  25. Gaussian 09, Revision D.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

  26. Spartan 14, 1.1.0, Wavefunction Inc., Irvine, CA.

  27. Daryaee F, Kobarfard F, Khalaj A, Farina P (2009) Eur J Med Chem 44:289–295

    Article  CAS  Google Scholar 

  28. Dunlap-Smith A (2016) Computational chemistry of silatranes. Testing the limits of modern Density Functional Theory. Dissertation for the Bachelor of Science in Chemistry, University of New Hampshire, Durham, NH.

Download references

Acknowledgments

We gratefully acknowledge the Department of Chemistry, University of New Hampshire, for support of Holly M. Weaver-Guevara, Ryan Fitzgerald, and Azaline Dunlap-Smith and also acknowledge the helpful experimental contributions by Mathew Rauch and Brent Lawson as well as suggestions by Dr. Alka Prasher and Dr. Istvan Hargittai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Greenberg.

Additional information

Dedication

This article is dedicated to Nobel laureate Professor George A. Olah who made evanescent carbocations accessible and visible to all interested researchers.

Electronic supplementary material

ESM 1

(DOCX 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, J.P., Weaver-Guevara, H.M., Fitzgerald, R.W. et al. Ab initio computational study of 1-methyl-4-silatranone and attempts at its conventional synthesis. Struct Chem 28, 327–331 (2017). https://doi.org/10.1007/s11224-016-0871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0871-1

Keywords

Navigation