Skip to main content
Log in

Self-sorting of multicomponent Pt(II) metallacages

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using a social self-sorting phenomenon, two Pt(II)←pyridyl, carboxylate heteroleptic metallacages cage 1 and cage 2 have been constructed in nearly quantitative yields from a single reaction that contained twenty-eight communicative precursors, including five unique species 37 in a 2:4:16:2:4 molar ratio. The success of this reaction has been established by multinuclear NMR (31P and 1H), UV/Vis absorption and fluorescence emission spectroscopies. The process depends on various factors such as the energetic preference for Pt←N,O coordination over the Pt←N,N and Pt←O,O coordination motifs, the appropriate selection of stoichiometry and directionality of the precursors, as well as maximum site occupancy while keeping entropic costs as low as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu A, Isaacs L (2003) Self-sorting: the exception or the rule? J Am Chem Soc 125(16):4831–4835. doi:10.1021/ja028913b

    Article  CAS  Google Scholar 

  2. Safont-Sempere MM, Fernandez G, Wurthner F (2011) Self-sorting phenomena in complex supramolecular systems. Chem Rev 111(9):5784–5814. doi:10.1021/cr100357h

    Article  CAS  Google Scholar 

  3. He Z, Jiang W, Schalley CA (2015) Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem Soc Rev 44(3):779–789. doi:10.1039/c4cs00305e

    Article  CAS  Google Scholar 

  4. Saha ML, Schmittel M (2012) Degree of molecular self-sorting in multicomponent systems. Org Biomol Chem 10(24):4651–4684. doi:10.1039/c2ob25098e

    Article  Google Scholar 

  5. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738. doi:10.1038/171737a0

    Article  CAS  Google Scholar 

  6. Jiang W, Winkler HDF, Schalley CA (2008) Integrative self-sorting: construction of a cascade-stoppered hetero[3]rotaxane. J Am Chem Soc 130(42):13852–13853. doi:10.1021/ja806009d

    Article  CAS  Google Scholar 

  7. Zhang Z-J, Zhang H-Y, Wang H, Liu Y (2011) A twin-axial hetero[7]rotaxane. Angew Chem Int Ed 50(46):10834–10838. doi:10.1002/anie.201105375

    Article  CAS  Google Scholar 

  8. Wang W, Zhang Y, Sun B et al (2014) The construction of complex multicomponent supramolecular systems via the combination of orthogonal self-assembly and the self-sorting approach. Chem Sci 5(12):4554–4560. doi:10.1039/c4sc01550a

    Article  CAS  Google Scholar 

  9. Yang H-B, Ghosh K, Das N, Stang PJ (2006) Self-assembly of three-dimensional M3L2 cages via a new flexible organometallic clip. Org Lett 8(18):3991–3994. doi:10.1021/ol0614626

    Article  CAS  Google Scholar 

  10. Yang H-B, Ghosh K, Northrop BH, Stang PJ (2007) Self-recognition in the coordination-driven self-assembly of three-dimensional M3L2 polyhedra. Org Lett 9(8):1561–1564. doi:10.1021/ol070371l

    Article  CAS  Google Scholar 

  11. Zheng Y-R, Yang H-B, Northrop BH, Ghosh K, Stang PJ (2008) Size selective self-sorting in coordination-driven self-assembly of finite ensembles. Inorg Chem 47(11):4706–4711. doi:10.1021/ic800038j

    Article  CAS  Google Scholar 

  12. Zheng Y-R, Yang H-B, Ghosh K, Zhao L, Stang PJ (2009) Multicomponent supramolecular systems: self-organization in coordination-driven self-assembly. Chem Eur J 15(29):7203–7214. doi:10.1002/chem.200900230

    Article  CAS  Google Scholar 

  13. Zheng Y-R, Northrop BH, Yang H-B, Zhao L, Stang PJ (2009) Geometry directed self-selection in the coordination-driven self-assembly of irregular supramolecular polygons. J Org Chem 74(9):3554–3557. doi:10.1021/jo9002932

    Article  CAS  Google Scholar 

  14. Northrop BH, Zheng Y-R, Chi K-W, Stang PJ (2009) Self-organization in coordination-driven self-assembly. Acc Chem Res 42(10):1554–1563. doi:10.1021/ar900077c

    Article  CAS  Google Scholar 

  15. Smulders MMJ, Jimenez A, Nitschke JR (2012) Integrative self-sorting synthesis of a Fe8Pt6L24 cubic cage. Angew Chem Int Ed 51(27):6681–6685. doi:10.1002/anie.201202050

    Article  CAS  Google Scholar 

  16. Saha ML, Schmittel M (2013) From 3-fold completive self-sorting of a nine-component library to a seven-component scalene quadrilateral. J Am Chem Soc 135(47):17743–17746. doi:10.1021/ja410425k

    Article  CAS  Google Scholar 

  17. Saha ML, Zhou Z, Stang PJ (2016) A four component heterometallic Cu-Pt quadrilateral via self-sorting. Chem Asian J. doi:10.1002/asia.201600399

    Google Scholar 

  18. Miyauchi M, Harada A (2004) Construction of supramolecular polymers with alternating α-, β-cyclodextrin units using conformational change induced by competitive guests. J Am Chem Soc 126(37):11418–11419. doi:10.1021/ja046562q

    Article  CAS  Google Scholar 

  19. Wang F, Han C, He C et al (2008) Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. J Am Chem Soc 130(34):11254–11255. doi:10.1021/ja8035465

    Article  CAS  Google Scholar 

  20. Tomimasu N, Kanaya A, Takashima Y, Yamaguchi H, Harada A (2009) Social self-sorting: alternating supramolecular oligomer consisting of isomers. J Am Chem Soc 131(34):12339–12343. doi:10.1021/ja903988c

    Article  CAS  Google Scholar 

  21. Ogoshi T, Kayama H, Yamafuji D, Aoki T, T-a Yamagishi (2012) Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host–guest complexation system and monofunctionalized pillar [6] arene. Chem Sci 3(11):3221–3226. doi:10.1039/c2sc20982a

    Article  CAS  Google Scholar 

  22. Liu S, Ruspic C, Mukhopadhyay P et al (2005) The cucurbit [n] uril family: prime components for self-sorting systems. J Am Chem Soc 127(45):15959–15967. doi:10.1021/ja055013x

    Article  CAS  Google Scholar 

  23. Shaller AD, Wang W, Gan H, Li AD (2008) Tunable molecular assembly codes direct reaction pathways. Angew Chem Int Ed 47(40):7705–7709. doi:10.1002/anie.200802606

    Article  CAS  Google Scholar 

  24. Rudzevich Y, Rudzevich V, Klautzsch F, Schalley CA, Bohmer V (2009) A self-sorting scheme based on tetra-urea calix[4]arenes. Angew Chem Int Ed 48(21):3867–3871. doi:10.1002/anie.200805754

    Article  CAS  Google Scholar 

  25. Ajami D, Hou J-L, Dale TJ, Barrett E, Rebek J Jr (2009) Disproportionation and self-sorting in molecular encapsulation. Proc Natl Acad Sci USA 106(26):10430–10434. doi:10.1073/pnas.0809903106

    Article  CAS  Google Scholar 

  26. Pal A, Karthikeyan S, Sijbesma RP (2010) Coexisting hydrophobic compartments through self-sorting in rod-like micelles of bisurea bolaamphiphiles. J Am Chem Soc 132(23):7842–7843. doi:10.1021/ja101872x

    Article  CAS  Google Scholar 

  27. Pal A, Besenius P, Sijbesma RP (2011) Self-sorting in rodlike micelles of chiral bisurea bolaamphiphiles. J Am Chem Soc 133(33):12987–12989. doi:10.1021/ja205345e

    Article  CAS  Google Scholar 

  28. Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H (2011) Macroscopic self-assembly through molecular recognition. Nat Chem 3(1):34–37. doi:10.1038/nchem.893

    Article  CAS  Google Scholar 

  29. Stang PJ, Olenyuk B (1997) Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra. Acc Chem Res 30(12):502–518. doi:10.1021/ar9602011

    Article  CAS  Google Scholar 

  30. Leininger S, Olenyuk B, Stang PJ (2000) Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 100(3):853–908. doi:10.1021/cr9601324

    Article  CAS  Google Scholar 

  31. Fujita M, Tominaga M, Hori A, Therrien B (2005) Coordination assemblies from a Pd(II)-cornered square complex. Acc Chem Res 38(4):369–378. doi:10.1021/ar040153h

    Article  CAS  Google Scholar 

  32. Oliveri CG, Ulmann PA, Wiester MJ, Mirkin CA (2008) Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc Chem Res 41(12):1618–1629. doi:10.1021/ar800025w

    Article  CAS  Google Scholar 

  33. De S, Mahata K, Schmittel M (2010) Metal-coordination-driven dynamic heteroleptic architectures. Chem Soc Rev 39(5):1555–1575. doi:10.1039/b922293f

    Article  CAS  Google Scholar 

  34. Chakrabarty R, Mukherjee PS, Stang PJ (2011) Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem Rev 111(11):6810–6918. doi:10.1021/cr200077m

    Article  CAS  Google Scholar 

  35. Kreno LE, Leong K, Farha OK et al (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112(2):1105–1125. doi:10.1021/cr200324t

    Article  CAS  Google Scholar 

  36. Cook TR, Zheng Y-R, Stang PJ (2013) Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem Rev 113(1):734–777. doi:10.1021/cr3002824

    Article  CAS  Google Scholar 

  37. Nakamura T, Ube H, Shiro M, Shionoya M (2013) A self-assembled multiporphyrin cage complex through three different zinc(II) center formation under well-balanced aqueous conditions. Angew Chem Int Ed 52(2):720–723. doi:10.1002/anie.201208040

    Article  CAS  Google Scholar 

  38. Brown CJ, Toste FD, Bergman RG, Raymond KN (2015) Supramolecular catalysis in metal-ligand cluster hosts. Chem Rev 115(9):3012–3035. doi:10.1021/cr4001226

    Article  CAS  Google Scholar 

  39. Cook TR, Stang PJ (2015) Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem Rev 115(15):7001–7045. doi:10.1021/cr5005666

    Article  CAS  Google Scholar 

  40. Newkome GR, Moorefield CN (2015) From 1→3 dendritic designs to fractal supramacromolecular constructs: understanding the pathway to the Sierpinski gasket. Chem Soc Rev 44(12):3954–3967. doi:10.1039/c4cs00234b

    Article  CAS  Google Scholar 

  41. McConnell AJ, Wood CS, Neelakandan PP, Nitschke JR (2015) Stimuli-responsive metal-ligand assemblies. Chem Rev 115(15):7729–7793. doi:10.1021/cr500632f

    Article  CAS  Google Scholar 

  42. Lifschitz AM, Rosen MS, McGuirk CM, Mirkin CA (2015) Allosteric supramolecular coordination constructs. J Am Chem Soc 137(23):7252–7261. doi:10.1021/jacs.5b01054

    Article  CAS  Google Scholar 

  43. Howlader P, Mukherjee PS (2016) Face and edge directed self-assembly of Pd12 tetrahedral nano-cages and their self-sorting. Chem Sci 7(9):5893–5899. doi:10.1039/c6sc02012g

    Article  CAS  Google Scholar 

  44. Zheng Y-R, Zhao Z, Wang M et al (2010) A facile approach toward multicomponent supramolecular structures: selective self-assembly via charge separation. J Am Chem Soc 132(47):16873–16882. doi:10.1021/ja106251f

    Article  CAS  Google Scholar 

  45. Yan X, Cook TR, Wang P, Huang F, Stang PJ (2015) Highly emissive platinum(II) metallacages. Nat Chem 7(4):342–348. doi:10.1038/nchem.2201

    Article  CAS  Google Scholar 

  46. Kramer R, Lehn J-M, Marquisrigault A (1993) Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. Proc Natl Acad Sci USA 90(12):5394–5398. doi:10.1073/pnas.90.12.5394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.J.S. thanks NSF (Grant 1212799) for financial support.

Funding

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingming Zhang, Manik Lal Saha or Peter J. Stang.

Additional information

Dedicated to Professor George A. Olah on the occasion of his 90th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Saha, M.L. & Stang, P.J. Self-sorting of multicomponent Pt(II) metallacages. Struct Chem 28, 453–459 (2017). https://doi.org/10.1007/s11224-016-0859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0859-x

Keywords

Navigation