Skip to main content
Log in

Structural complexity and crystallization: the Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Analysis of the evolution of structural complexity of the Cu2(OH)3Cl polymorphs along the botallackite–atacamite–clinoatacamite Ostwald cascade of phases from the viewpoint of Shannon information-based complexity parameters shows that structural information increases during the transition from less stable to more stable phases. Among the three polymorphs, botallackite is the simplest, atacamite is intermediate, and clinoatacamite is the most complex. This agrees well with the Goldsmith’s simplexity rule and shows that complexity is a physically important parameter that characterizes crystallization in complex chemical systems. Consideration of the crystal structures of the Cu2(OH)3Cl polymorphs in terms of their Cu–Cl arrays shows that transformation between the phases involves breaking and formation of chemical bonds and therefore has a reconstructive character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mackay AL (1984) Descriptors for complex inorganic structures. Croat Chem Acta 57:725–736

    CAS  Google Scholar 

  2. Mackay AL (1986) Generalised crystallography. Comput Math Appl 12B:21–37

    Article  Google Scholar 

  3. Mackay AL (1995) Generalised crystallography. J Mol Struct (Theochem) 336:293–303

    Article  CAS  Google Scholar 

  4. Mackay AL (2001) On complexity. Crystallogr Rep 46:524–526

    Article  Google Scholar 

  5. Mackay AL (2002) Generalized crystallography. Struct Chem 13:217–222

    Google Scholar 

  6. Oganov AR, Valle M (2009) How to quantify energy landscapes of solids. J Chem Phys 130:104504

    Article  Google Scholar 

  7. Hornfeck W, Hoch C (2015) Structural chemistry and number theory amalgamized: crystal structure of Na11Hg52. Acta Crystallogr B 71:752–767

    Article  CAS  Google Scholar 

  8. Varn DP, Crutchfield JP (2016) What did Erwin mean? The physics of information from the materials genomics of aperiodic crystals and water to molecular information catalysts and life. Phil Trans R Soc A 2016(374):20150067. doi:10.1098/rsta.2015.0067

    Article  Google Scholar 

  9. Krivovichev SV (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallogr A 68:393–398

    Article  CAS  Google Scholar 

  10. Krivovichev SV (2012) Information-based measures of structural complexity: application to fluorite-related structures. Struct Chem 23:1045–1052

    Article  CAS  Google Scholar 

  11. Krivovichev SV (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineral Mag 77:275–326

    Article  CAS  Google Scholar 

  12. Krivovichev SV (2014) Which inorganic structures are the most complex? Angew Chem Int Ed 53:654–661

    Article  CAS  Google Scholar 

  13. Krivovichev SV (2016) Structural complexity and configurational entropy of crystalline solids. Acta Crystallogr B 72:274–276

    Article  CAS  Google Scholar 

  14. Goldsmith JR (1953) A “simplexity principle” and its relation to “ease” of crystallization. J Geol 61:439–451

    Article  CAS  Google Scholar 

  15. Navrotsky A (2004) Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc Natl Acad Sci USA 101:12096–12101

    Article  CAS  Google Scholar 

  16. Morse JW, Casey WH (1988) Ostwald processes and mineral paragenesis in sediments. Am J Sci 288:537–560

    Article  CAS  Google Scholar 

  17. Brasseur H, Toussaint J (1942) Structure cristalline de l’atacamite. Bull Soc R Sci Liege 11:555–566

    CAS  Google Scholar 

  18. Wells AF (1949) The crystal structure of atacamite and the crystal chemistry of cupric compounds. Acta Crystallogr 2:175–180

    Article  CAS  Google Scholar 

  19. Parise JB, Hyde BG (1986) The structure of atacamite and its relationships to spinel. Acta Crystallogr C 42:1277–1280

    Article  Google Scholar 

  20. Zenmyo K, Kubo H, Tokita M, Hamasaki T, Hagihala M, Zheng X-G, Kawae T, Takeuchi Y, Matsumura M (2013) Proton NMR study of atacamite Cu2Cl(OH)3. J Phys Soc Jpn 82:084707

    Article  Google Scholar 

  21. Church AH (1865) Notes on a Cornish mineral of the atacamite group. J Chem Soc 18:212–214

    Article  Google Scholar 

  22. Voronova AA, Vainshtein BK (1958) An electron diffraction study of CuCl2(Cu(OH)2)3. Sov Phys Crystallogr 3:445–451

    Google Scholar 

  23. Hawthorne FC (1985) Refinement of the crystal structure of botallackite. Mineral Mag 49:87–89

    Article  CAS  Google Scholar 

  24. Jambor JL, Dutrizac JE, Roberts AC, Grice JD, Szymanski JT (1996) Clinoatacamite, a new polymorph of Cu2(OH)3Cl, and its relationship to paratacamite and “anarakite”. Can Mineral 34:61–72

    CAS  Google Scholar 

  25. Grice JD, Szymanski JT, Jambor JL (1996) The crystal structure of clinoatacamite, a new polymorph of Cu2(OH)3Cl. Can Mineral 34:73–78

    CAS  Google Scholar 

  26. Braithwaite RSW, Mereiter K, Paar WH, Clark AM (2004) Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineral Mag 68:527–539

    Article  CAS  Google Scholar 

  27. Malcherek T, Schlüter J (2010) Anatacamite from La Vendida mine, Sierra Gorda, Atacama desert, Chile: a triclinic polymorph of Cu2(OH)3Cl. Neues Jahrb Mineral Abh 187:307–312

    Article  CAS  Google Scholar 

  28. Hålenius U, Hatert F, Pasero M, Mills SJ (2015) New minerals and nomenclature modifications approved in 2015. Mineral Mag 79:941–949

    Article  Google Scholar 

  29. Zheng XG, Mori T, Nishiyama K, Higemoto W, Yamada H, Nishikubo K, Xu CN (2005) Antiferromagnetic transitions in polymorphous minerals of the natural cuprates atacamite and botallackite Cu2Cl(OH)3. Phys Rev B 71:174404

    Article  Google Scholar 

  30. Liu X-D, Zheng X-G, Meng D-D, Xu X-L, Guo Q-X (2013) Raman spectroscopic study of the frustrated spin 1/2 antiferromagnet clinoatacamite. J Phys Condens Matter 25:256003

    Article  Google Scholar 

  31. Scott DA (2000) A review of copper chlorides and related salts in bronze corrosion and as painting pigments. Stud Conserv 45:39–53

    CAS  Google Scholar 

  32. Frost RL, Martens W, Kloprogge JT, Williams PA (2002) Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance. J Raman Spectrosc 33:801–806

    Article  CAS  Google Scholar 

  33. Martens W, Frost RL, Williams PA (2003) Raman and infrared spectroscopic study of the basic copper chloride minerals—implications for the study of the copper and brass corrosion and “bronze disease”. Neues Jahrb Mineral Abh 178:197–215

    Article  CAS  Google Scholar 

  34. Cameron EM, Leybourne MI, Palacios C (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineral Depos 42:205–218

    Article  CAS  Google Scholar 

  35. Reich M, Palacios C, Parada MA, Fehn U, Cameron EM, Leybourne MI, Zuniga A (2008) Atacamite formation by deep saline waters in copper deposits from the Atacama Desert, Chile: evidence from fluid inclusions, groundwater geochemistry, TEM, and 36Cl data. Mineral Depos 43:663–675

    Article  CAS  Google Scholar 

  36. Dekov V, Boycheva T, Halenius U, Petersen S, Billstrom K, Stummeyer J, Kamenov G, Shanks W (2011) Atacamite and paratacamite from the ultramafic-hosted Logatchev seafloor vent field (14°45′N, Mid-Atlantic Ridge). Chem Geol 286:169–184

    CAS  Google Scholar 

  37. Clarke CE, le Roux SG, Roychoudhury AN (2014) The role of evaporation on the formation of secondary Cu-hydroxy minerals in the arid Namaqualand soil system of South Africa. Appl Geochem 47:52–60

    Article  CAS  Google Scholar 

  38. Pollard AM, Thomas RG, Williams PA (1989) Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite, and botallackite. Mineral Mag 53:557–563

    Article  CAS  Google Scholar 

  39. Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 14:3576–3586

    Article  CAS  Google Scholar 

  40. O’Keeffe M, Hyde BG (1985) An alternative approach to non-molecular crystal structures with emphasis on the arrangement of cations. Struct Bond 61:77–144

    Article  Google Scholar 

  41. Krivovichev SV, Filatov SK (1999) Metal arrays in structural units based on anion-centered metal tetrahedra. Acta Crystallogr B 55:664–676

    Article  CAS  Google Scholar 

  42. Krivovichev SV, Filatov SK, Burns PC (2002) The cuprite-like framework of OCu4 tetrahedra in the crystal structure of synthetic melanothallite, Cu2OCl2, and its negative thermal expansion. Can Mineral 40:1185–1190

    Article  CAS  Google Scholar 

  43. Sharkey JB, Lewin SZ (1972) Thermochemical properties of the copper(II) hydroxychlorides. Thermochim Acta 3:189–201

    Article  CAS  Google Scholar 

  44. Welch MD, Sciberras MJ, Williams PA, Leverett P, Schlüter J, Malcherek T (2014) A temperature-induced reversible transformation between paratacamite and herbertsmithite. Phys Chem Miner 41:33–48

    Article  CAS  Google Scholar 

  45. Schlüter J, Malcherek T (2007) Haydeeite, Cu3MgCl2(OH)6, a new mineral from the Haydee mine, Salar Grande, Atacama desert, Chile. Neues Jahrb Mineral Abh 184:39–42

    Article  Google Scholar 

  46. Kampf AR, Sciberras MJ, Williams PA, Dini M, Molina Donoso AA (2013) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite. Mineral Mag 77:3047–3054

    Article  CAS  Google Scholar 

  47. Kampf AR, Sciberras MJ, Leverett P, Williams PA, Malcherek T, Schlüter J, Welch MD, Dini M, Molina Donoso AA (2013) Paratacamite-(Mg), Cu3(Mg, Cu)Cl2(OH)6, a new substituted basic copper chloride mineral from Camerones, Chile. Mineral Mag 77:3113–3124

    Article  CAS  Google Scholar 

  48. Sciberras MJ, Leverett P, Williams PA, Hibbs DE, Downes PJ, Welch MD, Kampf AR (2013) Paratacamite-(Ni), Cu3(Ni, Cu)Cl2(OH)6, a new mineral from the Carr Boyd Rocks mine, Western Australia. Aust J Mineral 17:39–44

    Google Scholar 

  49. Malcherek T, Bindi L, Dini M, Ghiara MR, Molina Donoso A, Nestola F, Rossi M, Schlüter J (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineral Mag 78:583–590

    Article  CAS  Google Scholar 

  50. Abe T, Tsukamoto K, Sunagawa I (1991) Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Phys Chem Miner 17:473–484

    Article  CAS  Google Scholar 

  51. Chesnokov BV, Lotova EV, Nigmatulina EN, Pavlyuchenko VS, Bushmakin AF (1990) Dmishteinbergite CaAl2Si2O8 (hexagonal)—a new mineral. Zap Vseross Mineral Obs 119(3):43–46 (in Russian)

    CAS  Google Scholar 

  52. Daniel I, Gillet P, McMillan PF, Richet P (1995) An in situ high-temperature structural study of stable and metastable CaAl2Si2O8 polymorphs. Mineral Mag 59:25–33

    Article  CAS  Google Scholar 

  53. Ma C, Krot AN, Bizzarro M (2013) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the Allende meteorite: a new member of refractory silicates formed in the solar nebula. Am Mineral 98:1368–1371

    Article  CAS  Google Scholar 

  54. Nestola F, Mittempergher S, Di Toro G, Zorzi F, Pedron D (2010) Evidence of dmisteinbergite (hexagonal form of CaAl2Si2O8) in pseudotachylyte: a tool to constrain the thermal history of a seismic event. Am Mineral 95:405–409

    Article  CAS  Google Scholar 

  55. Krivovichev SV, Shcherbakova EP, Nishanbaev TP (2012) The crystal structure of svyatoslavite and evolution of complexity during crystallization of a CaAl2Si2O8 melt: a structural automata description. Can Mineral 50:585–592

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SVK is grateful to the Russian Science Foundation (Grant 14-17-00071) for financial support of this study. FCH acknowledges support of an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Krivovichev.

Additional information

Dedicated to A.L. Mackay on the occassion of his 90th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivovichev, S.V., Hawthorne, F.C. & Williams, P.A. Structural complexity and crystallization: the Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite). Struct Chem 28, 153–159 (2017). https://doi.org/10.1007/s11224-016-0792-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0792-z

Keywords

Navigation