Skip to main content
Log in

Information-based measures of structural complexity: application to fluorite-related structures

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Topological complexity of fluorite-related structures consisting of edge- and corner-sharing tetrahedra is investigated using information-based complexity measures: topological information content, I G, normalized topological information content, I G,norm, vertex-degree distribution information content, I vd, and average edge complexity, E a. The I G and I G,norm parameters are quite sensitive to complexity of structural units and work well for homologous series as demonstrated for finite clusters and multiple chains. In addition, these parameters have high discriminative power and can be used for identification of structural units and crystal structures in general. The I vd and E a parameters are additional useful measures of complexity that are sensitive to the coordination numbers of particular atoms within the structural units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andersson S, Hyde BG (1974) J Solid State Chem 9:92

    Article  CAS  Google Scholar 

  2. Andersson S (1978) Acta Crystallogr A34:833

    CAS  Google Scholar 

  3. Nyman H, Andersson S (1979) Acta Crystallogr A35:580

    CAS  Google Scholar 

  4. Andersson S (1981) In: O’Keeffe M, Navrotsky A (eds) Structure and bonding in crystals, vol 2. Academic Press, New York

    Google Scholar 

  5. Andersson S, Hyde BG (1982) Z Kristallogr 158:119

    CAS  Google Scholar 

  6. Andersson S (1983) Angew Chem Int Ed 22:69

    Article  Google Scholar 

  7. Yang QB, Andersson S, Stenberg L (1987) Acta Crystallogr B43:14

    CAS  Google Scholar 

  8. Hyde BG, Andersson S (1989) Inorganic crystal structures. Wiley, New York

    Google Scholar 

  9. Jacob M, Lidin S, Andersson S (1993) Z Anorg Allg Chem 619:1721

    Article  CAS  Google Scholar 

  10. Andersson S (2006) Solid State Sci 8:730

    Article  CAS  Google Scholar 

  11. Bonchev D (2003) SAR QSAR Environ Res 14:199

    Article  CAS  Google Scholar 

  12. Bonchev D (2005) In: Bonchev D, Rouvray DH (eds) Complexity in chemistry, biology, and ecology. Springer, New York

    Chapter  Google Scholar 

  13. Dehmer M (2011) Symmetry 3:767

    Article  Google Scholar 

  14. Krivovichev SV (2012) Acta Crystallogr A68:393

    CAS  Google Scholar 

  15. O’Keeffe M, Hyde BG (1996) Crystal structures. I. Patterns and symmetry. Mineralogical Society of America, Washington, DC

    Google Scholar 

  16. Krivovichev SV (2000) Solid State Sci 1:211

    Article  Google Scholar 

  17. Krivovichev SV (2000) Solid State Sci 1:221

    Article  Google Scholar 

  18. Krivovichev SV, Filatov SK (1999) Acta Crystallogr B55:664

    CAS  Google Scholar 

  19. Klee WE (2004) Cryst Res Technol 39:959

    Article  CAS  Google Scholar 

  20. Chung SJ, Hahn Th, Klee WE (1984) Acta Crystallogr A40:42

    CAS  Google Scholar 

  21. Rashevsky N (1955) Bull Math Biophys 17:229

    Article  CAS  Google Scholar 

  22. Shannon E, Weaver W (1949) The mathematical theory of communications. University of Illinois Press, Urbana

    Google Scholar 

  23. Trucco E (1956) Bull Math Biophys 18:129

    Article  Google Scholar 

  24. Sahl K (1970) Z Kristallogr 132:99

    Article  CAS  Google Scholar 

  25. Starova GL, Krivovichev SV, Filatov SK (1998) Z Kristallogr 213:650

    Article  CAS  Google Scholar 

  26. Mattfeld H, Meyer G (1994) Z Anorg Allg Chem 620:85

    Article  CAS  Google Scholar 

  27. Krivovichev SV, Burns PC (2001) Eur J Mineral 13:801

    Article  CAS  Google Scholar 

  28. Siidra OI, Krivovichev SV, Armbruster T, Depmeier W (2008) Z Kristallogr 223:204

    Article  CAS  Google Scholar 

  29. Kramer V, Post E (1985) Mater Res Bull 20:407

    Article  Google Scholar 

  30. Besse JP, Bolte M, Baud G, Chevalier R (1976) Acta Crystallogr B32:3045

    CAS  Google Scholar 

  31. Palazzi M, Jaulmes S (1981) Acta Crystallogr B37:1340

    CAS  Google Scholar 

  32. Ketatni EM, Huvé M, Abraham F, Mentré O (2003) J Solid State Chem 172:327

    Article  CAS  Google Scholar 

  33. Colmont M, Huvé M, Mentré O (2006) Inorg Chem 45:6612

    Article  CAS  Google Scholar 

  34. Huvé M, Colmont M, Mentré O (2006) Inorg Chem 45:6604

    Article  Google Scholar 

  35. Khamaganova TN, Trunov VK, Dzhurinskii BF (1991) Zh Neorg Khim 36:855

    CAS  Google Scholar 

  36. Dent Glasser LS, Howie RA, Smart RM (1981) Acta Crystallogr B37:303

    Google Scholar 

  37. Brandle CD, Steinfink H (1969) Inorg Chem 8:1320

    Article  CAS  Google Scholar 

  38. Gastaldi L, Carre D, Pardo MP (1987) Acta Crystallogr B38:2365

    Google Scholar 

  39. Krivovichev SV, Turner R, Rumsey M, Siidra OI (2009) Mineral Mag 73:75

    Article  Google Scholar 

  40. Siidra OI, Krivovichev SV, Filatov SK (2008) Z Kristallogr 223:114

    Article  CAS  Google Scholar 

  41. Siidra OI, Krivovichev SV, Turner RW, Rumsey MS (2012) In: Krivovichev SV (ed) Minerals as advanced materials II. Springer, Heidelberg

    Google Scholar 

  42. Boher P, Garnier P, Gavarri JR, Hewat AW (1985) J Solid State Chem 57:343

    Article  CAS  Google Scholar 

  43. Narducci AA, Ibers JA (2000) J Alloys Compd 306:170

    Article  CAS  Google Scholar 

  44. Riebe HJ, Keller HL (1988) Z Anorg Allg Chem 566:62

    Article  CAS  Google Scholar 

  45. Corbel G, Leblanc M, Antic-Fidancev E, Lemaitre-Blaise M (1999) J Solid State Chem 144:35

    Article  CAS  Google Scholar 

  46. Krivovichev SV, Burns PC (2003) Z Kristallogr 218:357

    Article  CAS  Google Scholar 

  47. Cordier G, Ochmann H (1991) Z Kristallogr 197:295

    Article  CAS  Google Scholar 

  48. Krivovichev SV, Burns PC (2006) Can Mineral 44:515

    Article  CAS  Google Scholar 

  49. Ketatni M, Mentre O, Abraham F, Kzaiber F, Mernari B (1998) J Solid State Chem 139:274

    Article  CAS  Google Scholar 

  50. Giraud S, Drache M, Conflant P, Wignacourt JP, Steinfink H (2000) J Solid State Chem 154:435

    Article  CAS  Google Scholar 

  51. Kato K (1979) Acta Crystallogr B35:795

    CAS  Google Scholar 

  52. Cooper MA, Hawthorne FC (1994) Am Mineral 79:550

    CAS  Google Scholar 

  53. Welch M, Cooper MA, Hawthorne FC, Criddle AJ (2000) Am Mineral 85:1526

    CAS  Google Scholar 

  54. Krivovichev SV, Siidra OI, Nazarchuk EV, Burns PC, Depmeier W (2006) Inorg Chem 45:3846

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Federal Grant-in-Aid Program “Cadres” (State Contract 3.27.796.2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Krivovichev.

Additional information

Dedicated to Prof. Dr. Sten Andersson on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivovichev, S.V. Information-based measures of structural complexity: application to fluorite-related structures. Struct Chem 23, 1045–1052 (2012). https://doi.org/10.1007/s11224-012-0015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0015-1

Keywords

Navigation