Skip to main content
Log in

Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties

  • Published:
Strength of Materials Aims and scope

The non-monotonous behavior of strength, activation volume, and pressure sensitivity parameter, as the grain size enters the nanoscale regime, is interpreted on the basis of a “rule of mixtures” argument, commonly used for composites. Grain interior and grain boundary spaces are treated as two independent “phases” with distinct mechanical properties. When the simple “rule of mixtures” argument is extended to incorporate concepts from the continuum theory of mixtures, the Laplacian of strain is generated in the local constitutive equation for each phase. A simple one-dimensional configuration for a nanopolycrystal is assumed and a related boundary value problem is solved to nterpret the dependence of the overall elastic modulus on the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. C. Aifantis, “Gradient nanomechanics: applications to deformation, fracture, and diffusion in nanopolycrystals,” Metall. Mater. Trans. A, 42, No. 10, 2985–2998 (2011).

    Article  Google Scholar 

  2. J. E. Carsley, J. Ning, W. W. Milligan, et al., “A simple, mixtures-based model for the grain size dependence of strength in nanophase metals,” Nanostruct. Mater., 5, No. 4, 441–448 (1995).

    Article  Google Scholar 

  3. D. A. Konstantinidis and E. C. Aifantis, “On the ‘anomalous’ hardness of nano-crystalline materials,” Nanostruct. Mater., 10, No. 7, 1111–1118 (1998).

    Article  Google Scholar 

  4. V. G. Gryaznov, M. Y. Gutkin, A. E. Romanov, and L. I. Trusov, “On the yield stress of nanocrystals,” J. Mater. Sci., 28, No. 16, 4359–4365 (1993).

    Article  Google Scholar 

  5. M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nano-crystalline materials,” Prog. Mater. Sci., 51, No. 4, 427–556 (2006).

    Article  Google Scholar 

  6. M. Ke, S. A. Hackney, W. W. Milligan, and E. C. Aifantis, “Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films,” Nanostruct. Mater., 5, No. 6, 689–697 (1995).

    Article  Google Scholar 

  7. I. Ovid’ko and E. C. Aifantis, “Nanocrystals & nanomechanics: mechanisms & models. A selective review,” Rev. Adv. Mater. Sci., 35, No. 1-2, 1–24 (2013).

    Google Scholar 

  8. X. Zhang and K. E. Aifantis, “Interpreting the softening of nanomaterials through gradient plasticity,” J. Mater. Res., 26, No. 11, 1399–1405 (2011).

    Article  Google Scholar 

  9. K. E. Aifantis and A. A. Konstantinidis, “Hall–Petch revisited at the nanoscale,” Mater. Sci. Eng. B, 163, No. 3, 139–144 (2009).

    Article  Google Scholar 

  10. X. Zhang and K. E. Aifantis, “Accounting for grain boundary thickness in the sub-micron and nano scales,” Rev. Adv. Mater. Sci., 26, No. 1-2, 74–90 (2010).

    Google Scholar 

  11. J. R. Trelewicz and C. A. Schuh, “The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation,” Acta Mater., 55, No. 17, 5948–5958 (2007).

    Article  Google Scholar 

  12. J. R. Trelewicz and C. A. Schuh, “The Hall–Petch breakdown at high strain rates: optimizing nanocrystalline grain size for impact applications,” Appl. Phys. Lett., 93, No. 17, 171916–171916-3 (2008).

    Article  Google Scholar 

  13. H. Conrad, “Grain size dependence of the plastic deformation kinetics in Cu,” Mater. Sci. Eng. A, 341, No. 1-2, 216–228 (2003).

    Article  Google Scholar 

  14. J. Chen, L. Lu, and K. Lu, “Hardness and strain rate sensitivity of nanocrystalline Cu,” Scripta Mater., 54, No. 11, 1913–1918 (2006).

    Article  Google Scholar 

  15. X. H. Zhu, J. E. Carsley, W. W. Milligan, and E. C. Aifantis, “On the failure of pressure-sensitive plastic materials. Part I: Models of yield & shear band behavior,” Scripta Mater., 36, No. 6, 721–726 (1997).

    Article  Google Scholar 

  16. J. E. Carsley, W. W. Milligan, X. H. Zhu, and E. C. Aifantis, “On the failure of pressure-sensitive plastic materials. Part II: Comparisons with experiments on ultra fine grained Fe–10% Cu alloys,” Scripta Mater., 36, No. 6, 727–732 (1997).

    Article  Google Scholar 

  17. A. C. Lund and C. A. Schuh, “Strength asymmetry in nanocrystalline metals under multiaxial loading,” Acta Mater., 53, No. 11, 3193–3205 (2005).

    Article  Google Scholar 

  18. T. D. Shen, C. C. Koch, T. Y. Tsui, and G. M. Pharr, “On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/ alloying,” J. Mater. Res., 10, 2892–2896 (1995).

    Article  Google Scholar 

  19. G. Palumbo, S. J. Thorpe, and K. T. Aust, “On the contribution of triple junctions to the structure and properties of nanocrystalline materials,” Scripta Metall. Mater., 24, No. 7, 1347–1350 (1990).

    Article  Google Scholar 

  20. M. D. Kluge, D. Wolf, J. F. Lutsko, and S. R. Phillpot, “Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation,” J. Appl. Phys., 67, 2370–2379 (1990).

    Article  Google Scholar 

  21. G. W. Nieman, J. R. Weertman, and R. W. Siegel, “Mechanical behavior of nanocrystalline Cu and Pd,” J. Mater. Res., 6, No. 5, 1012–1027 (1991).

    Article  Google Scholar 

  22. J. Schiǿtz, T. Vegge, F. D. Di Tolla, and K. W. Jacobsen, “Atomic-scale simulations of the mechanical deformation of nanocrystalline metals,” Phys. Rev. B, 60, 11971–11983 (1999).

    Article  Google Scholar 

  23. E. C. Aifantis, “On scale invariance in anisotropic plasticity, gradient plasticity and gradient elasticity,” Int. J. Eng. Sci., 47, No. 11-12, 1089–1099 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

X. Zhang is grateful for the support of NSFC (11202172), CPSF (2013M530405), the Basic Application Research Plan of Sichuan Province (2015JY0239) and the Sichuan Provincial Youth Science and Technology Innovation Team (2013TD0004). The authors also acknowledge the support of Aristotle University through the Aristeia-II and Hellenic ERC-13 grants of the General Secretariat for Research and Technology (GSRT) of Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Aifantis.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 157 – 167, July – August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Aifantis, E.C. Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties. Strength Mater 47, 642–651 (2015). https://doi.org/10.1007/s11223-015-9700-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-015-9700-9

Keywords

Navigation