Skip to main content

Nanograins: II. Plasticity and Yield Stress

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

Abstract

The competition between the energy density gain and the cohesive energy loss in the skin dictates intrinsically the IHPR. The competition between the activation and the inhibition of dislocation motion activates the IHPR. The critical size in the IHPR is determined by: (1) the nature of the bonds involved and (2) the temperature of operation. Superplasticity takes place in the quasi-molten phase. The skin governs the multi-field coupling effect on the physical anomalies of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Siegel, G.E. Fougere, Mechanical properties of nanophase metals. Nanostruct. Mater. 6(1–4), 205–216 (1995)

    Google Scholar 

  2. L.C. Zhang, I. Zarudi, Towards a deeper understanding of plastic deformation in mono-crystalline silicon. Int. J. Mech. Sci. 43(9), 1985–1996 (2001)

    MATH  Google Scholar 

  3. A. Concustell, N. Mattern, H. Wendrock, U. Kuehn, A. Gebert, J. Eckert, A.L. Greer, J. Sort, M.D. Baro, Mechanical properties of a two-phase amorphous Ni–Nb–Y alloy studied by nanoindentation. Scripta Mater. 56(2), 85–88 (2007)

    Google Scholar 

  4. E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. London Sect. B 64(381), 747–753 (1951)

    ADS  Google Scholar 

  5. N.J. Petch, The cleavage strengthening of polycrystals. J. Iron Steel Inst. 174(1), 25–28 (1953)

    Google Scholar 

  6. M.F. Ashby, Deformation of plastically non-homogeneous materials. Phil. Mag. 21(170), 399–424 (1970)

    ADS  Google Scholar 

  7. Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, High tensile ductility in a nanostructured metal. Nature 419(6910), 912–915 (2002)

    ADS  Google Scholar 

  8. D. Jang, M. Atzmon, Grain-size dependence of plastic deformation in nanocrystalline Fe. J. Appl. Phys. 93(11), 9282–9286 (2003)

    ADS  Google Scholar 

  9. H. Conrad, J. Narayan, Mechanism for grain size softening in nanocrystalline Zn. Appl. Phys. Lett. 81(12), 2241–2243 (2002)

    ADS  Google Scholar 

  10. H.S. Kim, A composite model for mechanical properties of nanocrystalline materials. Scripta Mater. 39(8), 1057–1061 (1998)

    Google Scholar 

  11. H. Van Swygenhoven, P.M. Derlet, A. Hasnaoui, Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66(2), 024101 (2002)

    ADS  Google Scholar 

  12. S.G. Zaichenko, A.M. Glezer, Disclination mechanism of plastic deformation of nanocrystalline materials. Interface Sci. 7(1), 57–67 (1999)

    Google Scholar 

  13. C.E. Carlton, P.J. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater. 55(11), 3749–3756 (2007)

    Google Scholar 

  14. A.S. Argon, S. Yip, The strongest size. Philos. Mag. Lett. 86(11), 713–720 (2006)

    ADS  Google Scholar 

  15. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Prog. Mater Sci. 54(2), 179–307 (2009)

    Google Scholar 

  16. M. Zhao, J.C. Li, Q. Jiang, Hall–Petch relationship in nanometer size range. J. Alloy. Compd. 361(1–2), 160–164 (2003)

    Google Scholar 

  17. J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561–563 (1998)

    ADS  Google Scholar 

  18. W.W. Gerberich, W.M. Mook, C.R. Perrey, C.B. Carter, M.I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P.H. McMurry, S.L. Girshick, Superhard silicon nanospheres. J. Mech. Phys. Solids 51(6), 979–992 (2003)

    ADS  Google Scholar 

  19. Y. Giga, Y. Kimoto, Demonstration of an inverse Hall–Petch relationship in electrodeposited nanocrystalline Ni–W alloys through tensile testing. Scripta Mater. 55(2), 143–146 (2006)

    Google Scholar 

  20. H. Somekawa, T.G. Nieh, K. Higashi, Instrumented indentation properties of electrodeposited Ni–W alloys with different microstructures. Scripta Mater. 50(11), 1361–1365 (2004)

    Google Scholar 

  21. C.A. Schuh, T.G. Nieh, H. Iwasaki, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51(2), 431–443 (2003)

    Google Scholar 

  22. T. Yamasaki, P. Schlossmacher, K. Ehrlich, Y. Ogino, Formation of amorphous electrodeposited Ni–W alloys and their nanocrystallization. Nanostruct. Mater. 10(3), 375–388 (1998)

    Google Scholar 

  23. S. Guicciardi, D. Sciti, C. Melandri, A. Bellosi, Nanoindentation characterization of submicro- and nano-sized liquid-phase-sintered SiC ceramics. J. Am. Ceram. Soc. 87(11), 2101–2107 (2004)

    Google Scholar 

  24. Y. Zhou, U. Erb, K.T. Aust, G. Palumbo, The effects of triple junctions and grain boundaries on hardness and Young’s modulus in nanostructured Ni–P. Scripta Mater. 48(6), 825–830 (2003)

    Google Scholar 

  25. A. Inoue, H.M. Kimura, M. Watanabe, A. Kawabata, Work softening of aluminum base alloys containing nanoscale icosahedral phase. Mater. Trans. JIM 38(9), 756–760 (1997)

    Google Scholar 

  26. S.C. Tjong, H. Chen, Nanocrystalline materials and coatings. Mater. Sci. Eng. R-Rep. 45(1–2), 1–88 (2004)

    Google Scholar 

  27. I.A. Ovid’ko, Deformation and diffusion modes in nanocrystalline materials. Int. Mater. Rev. 50(2), 65–82 (2005)

    Google Scholar 

  28. D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, H. Gleiter, Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments? Acta Mater. 53(1), 1–40 (2005)

    Google Scholar 

  29. D. Sherman, D. Brandon, Mechanical properties of hard materials and their relation to microstructure. Adv. Eng. Mater. 1(3–4), 161–181 (1999)

    Google Scholar 

  30. R.A. Andrievskii, A.M. Glezer, Size effects in nanocrystalline materials: II Mechanical and physical properties. Fiz. Metallov Metalloved. 89(1), 91–112 (2000)

    Google Scholar 

  31. A.I. Gusev, The effects of the nanocrystalline state in solids. Uspekhi Fiz. Nauk 168(1), 55–83 (1998)

    Google Scholar 

  32. G.S. Was, T. Foecke, Deformation and fracture in microlaminates. Thin Solid Films 286(1–2), 1–31 (1996)

    ADS  Google Scholar 

  33. C. Suryanarayana, Nanocrystalline materials. Int. Mater. Rev. 40(2), 41–64 (1995)

    Google Scholar 

  34. V.G. Gryaznov, L.I. Trusov, Size effects in micromechanics of nanocrystals. Prog. Mater Sci. 37(4), 289–401 (1993)

    Google Scholar 

  35. G.A. Malygin, Plasticity and strength of micro- and nanocrystalline materials. Phys. Solid State 49(6), 1013–1033 (2007)

    ADS  Google Scholar 

  36. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51(4), 427–556 (2006)

    Google Scholar 

  37. J.C.M. Li, Y.T. Chou, Role of dislocations in flow stress grain size relationships. Metall. Trans. 1(5), 1145–1148 (1970)

    Google Scholar 

  38. J.A. Knapp, D.M. Follstaedt, Hall–Petch relationship in pulsed-laser deposited nickel films. J. Mater. Res. 19(1), 218–227 (2004)

    ADS  Google Scholar 

  39. R.W. Armstron, A.K. Head, Dislocation queueing and fracture in an elastically anisotropic material. Acta Metall. 13(7), 759–764 (1956)

    Google Scholar 

  40. N. Louat, Alloys, strong at room and elevated-temperatures from powder-metallurgy. Acta Metall. 33(1), 59–69 (1985)

    Google Scholar 

  41. A. Lasalmonie, J.L. Strudel, Influence of grain-size on the mechanical-behavior of some high-strength materials. J. Mater. Sci. 21(6), 1837–1852 (1986)

    ADS  Google Scholar 

  42. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3(1), 43–47 (2004)

    ADS  Google Scholar 

  43. J.C. Li. Transactions of the society of petroleum engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers Inc. 227 (239)1963

    Google Scholar 

  44. C.S. Pande, B.B. Rath, M.A. Imam, Effect of annealing twins on Hall–Petch relation in polycrystalline materials. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 367(1–2), 171–175 (2004)

    Google Scholar 

  45. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59(5), 3393–3407 (1999)

    ADS  Google Scholar 

  46. K.W. Jacobsen, J.K. Norskov, M.J. Puska, Interatomic interactions in the effective-medium theory. Phys. Rev. B 35(14), 7423–7442 (1987)

    ADS  Google Scholar 

  47. M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity. Acta Metall. 21(2), 149–163 (1973)

    Google Scholar 

  48. H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3(6), 399–403 (2004)

    ADS  Google Scholar 

  49. H. Bei, S. Xie, E.P. George, Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96(10), 105503 (2006)

    ADS  Google Scholar 

  50. G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, A model for the inverse Hall–Petch relation of nanocrystalline materials. Mater. Sci. Eng. 409(1–2), 243–248 (2005). Structural Materials Properties Microstructure and Processing

    Google Scholar 

  51. T.G. Nieh, J.G. Wang, Hall–Petch relationship in nanocrystalline Ni and Be–B alloys. Intermetallics 13(3–4), 377–385 (2005)

    Google Scholar 

  52. E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49(7), 663–668 (2003)

    Google Scholar 

  53. H.S. Kim, Y. Estrin, Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials. Acta Mater. 53(3), 765–772 (2005)

    Google Scholar 

  54. Z.H. Jiang, X.L. Liu, G.Y. Li, Q. Jiang, J.S. Lian, Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Appl. Phys. Lett. 88(14), 143115 (2006)

    ADS  Google Scholar 

  55. J.S. Lian, C.D. Gu, Q. Jiang, Z.H. Jiang, Strain rate sensitivity of face-centered-cubic nanocrystalline materials based on dislocation deformation. J. Appl. Phys. 99(7), 076103 (2006)

    ADS  Google Scholar 

  56. S. Lefebvre, B. Devincre, T. Hoc, Simulation of the Hall–Petch effect in ultra-fine grained copper. Mater. Sci. Eng. 400, 150–153 (2005). Structural Materials Properties Microstructure and Processing

    Google Scholar 

  57. C. Lu, Y.W. Mai, Y.G. Shen, Optimum information in crackling noise. Phys. Rev. E 72(2), 027101 (2005)

    ADS  Google Scholar 

  58. F. Louchet, J. Weiss, T. Richeton, Hall–Petch law revisited in terms of collective dislocation dynamics. Phys. Rev. Lett. 97(7), 075504 (2006)

    ADS  Google Scholar 

  59. F.A. Mohamed, Interpretation of nanoscale softening in terms of dislocation-accommodated boundary sliding. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 38A(2), 340–347 (2007)

    ADS  Google Scholar 

  60. H.W. Song, S.R. Guo, Z.Q. Hu, A coherent polycrystal model for the inverse Hall–Petch relation in nanocrystalline materials. Nanostruct. Mater. 11(2), 203–210 (1999)

    Google Scholar 

  61. S. Cheng, J.A. Spencer, W.W. Milligan, Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51(15), 4505–4518 (2003)

    Google Scholar 

  62. P.P. Chattopadhyay, S.K. Pabi, I. Manna, On the inverse Hall-Fetch relationship in nanocrystalline materials. Z. Metallk. 91(12), 1049–1051 (2000)

    Google Scholar 

  63. B. Jiang, G.J. Weng, A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J. Mech. Phys. Solids 52(5), 1125–1149 (2004)

    ADS  MATH  Google Scholar 

  64. J. Schiotz, K.W. Jacobsen, A maximum in the strength of nanocrystalline copper. Science 301(5638), 1357–1359 (2003)

    ADS  Google Scholar 

  65. V. Bata, E.V. Pereloma, An alternative physical explanation of the Hall–Petch relation. Acta Mater. 52(3), 657–665 (2004)

    Google Scholar 

  66. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials. Philos. Mag. Lett. 83(6), 385–393 (2003)

    ADS  Google Scholar 

  67. R.A. Masumura, P.M. Hazzledine, C.S. Pande, Yield stress of fine grained materials. Acta Mater. 46(13), 4527–4534 (1998)

    Google Scholar 

  68. A.A. Fedorov, M.Y. Gutkin, I.A. Ovid’ko, Triple junction diffusion and plastic flow in fine-grained materials. Scr. Mater. 47(1), 51–55 (2002)

    Google Scholar 

  69. E. Arzt, Overview no. 130—Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46(16), 5611–5626 (1998)

    Google Scholar 

  70. U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip. Prog. Mater Sci. 19, 1–281 (1975)

    Google Scholar 

  71. X.Y. Qin, X.G. Zhu, S. Gao, L.F. Chi, J.S. Lee, Compression behaviour of bulk nanocrystalline Ni–Fe. J. Phys. Condens. Matter 14(10), 2605–2620 (2002)

    ADS  Google Scholar 

  72. X.D. Han, K. Zheng, Y.F. Zhang, X.N. Zhang, Z. Zhang, Z.L. Wang, Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19(16), 2112–2118 (2007)

    Google Scholar 

  73. V. Brazhkin, N. Dubrovinskaia, A. Nicol, N. Novikov, R. Riedel, R. Solozhenko, Y. Zhao, What-does ‘harder than diamond’ mean? Nat. Mater. 3(9), 576–577 (2004)

    ADS  Google Scholar 

  74. L.D. Marks, Experimental studies of small-particle structures. Rep. Prog. Phys. 57(6), 603–649 (1994)

    ADS  Google Scholar 

  75. C.Q. Sun, S. Li, C.M. Li, Impact of bond order loss on surface and nanosolid mechanics. J. Phys. Chem. B 109(1), 415–423 (2005)

    Google Scholar 

  76. S. Yip, Nanocrystalline metals: Mapping plasticity. Nat. Mater. 3(1), 11–12 (2004)

    ADS  MathSciNet  Google Scholar 

  77. S.Y. Chang, T.K. Chang, Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test. J. Appl. Phys. 101(3), 033507 (2007)

    ADS  Google Scholar 

  78. J. Narayan, R.K. Venkatesan, A. Kvit, Structure and properties of nanocrystalline zinc films. J. Nanopart. Res. 4(3), 265–269 (2002)

    Google Scholar 

  79. X.J. Liu, L.W. Yang, Z.F. Zhou, P.K. Chu, C.Q. Sun, Inverse Hall–Petch relationship of nanostructured TiO2: Skin-depth energy pinning versus surface preferential melting. J. Appl. Phys. 108, 073503 (2010)

    ADS  Google Scholar 

  80. P.G. Sanders, J.A. Eastman, J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45(10), 4019–4025 (1997)

    Google Scholar 

  81. H.H. Fu, D.J. Benson, M.A. Meyers, Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 49(13), 2567–2582 (2001)

    Google Scholar 

  82. P.G. Sanders, C.J. Youngdahl, J.R. Weertman, The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng. 234, 77–82 (1997). Structural Materials Properties Microstructure and Processing

    Google Scholar 

  83. C.A. Schuh, T.G. Nieh, T. Yamasaki, Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46(10), 735–740 (2002)

    Google Scholar 

  84. G. Palumbo, U. Erb, K.T. Aust, Triple line disclination effects on the mechanical-behavior of materials. Scr. Metall. Mater. 24(12), 2347–2350 (1990)

    Google Scholar 

  85. K. Lu, Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng. R-Rep. 16(4), 161–221 (1996)

    Google Scholar 

  86. B. Chen, H. Zhang, K. Dunphy-Guzman, D. Spagnoli, M. Kruger, D. Muthu, M. Kunz, S. Fakra, J. Hu, Q. Guo, J. Banfield, Size-dependent elasticity of nanocrystalline titania. Phys. Rev. B 79(12), 125406 (2009)

    ADS  Google Scholar 

  87. H.J. Hofler, R.S. Averback, Grain-growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture-toughness. Scr. Metall. Mater. 24(12), 2401–2406 (1990)

    Google Scholar 

  88. Y. He, J.F. Liu, W. Chen, Y. Wang, H. Wang, Y.W. Zeng, G.Q. Zhang, L.N. Wang, J. Liu, T.D. Hu, H. Hahn, H. Gleiter, J.Z. Jiang, High-pressure behavior of SnO2 nanocrystals. Phys. Rev. B 72(21), 212102 (2005)

    ADS  Google Scholar 

  89. M. Born, Thermodynamics of crystals and melting. J. Chem. Phys. 7(8), 591–603 (1939)

    ADS  Google Scholar 

  90. F.G. Shi, Size-dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9(5), 1307–1313 (1994)

    ADS  Google Scholar 

  91. Q. Jiang, Z. Zhang, J.C. Li, Superheating of nanocrystals embedded in matrix. Chem. Phys. Lett. 322(6), 549–552 (2000)

    ADS  Google Scholar 

  92. Q. Jiang, C.C. Yang, Size effect on the phase stability of nanostructures. Curr. Nanosci. 4(2), 179–200 (2008)

    ADS  Google Scholar 

  93. R. Vallee, M. Wautelet, J.P. Dauchot, M. Hecq, Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology 12(1), 68–74 (2001)

    ADS  Google Scholar 

  94. G. Guisbiers, M. Kazan, O. Van Overschelde, M. Wautelet, S. Pereira, Mechanical and thermal properties of metallic and semiconductive nanostructures. J. Chem. Phys. C 112(11), 4097–4103 (2008)

    Google Scholar 

  95. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54(24), 17954–17961 (1996)

    ADS  Google Scholar 

  96. W.H. Qi, M.P. Wang, G.Y. Xu, The particle size dependence of cohesive energy of metallic nanoparticles. Chem. Phys. Lett. 372(5–6), 632–634 (2003)

    ADS  Google Scholar 

  97. K.S. Siow, A.A.O. Tay, P. Oruganti, Mechanical properties of nanocrystalline copper and nickel. Mater. Sci. Technol. 20(3), 285–294 (2004)

    Google Scholar 

  98. X.D. Han, Y.F. Zhang, K. Zheng, X.N. Zhang, Z. Zhang, Y.J. Hao, X.Y. Guo, J. Yuan, Z.L. Wang, Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7(2), 452–457 (2007)

    ADS  Google Scholar 

  99. Y. Yan, H. Yin, Q.P. Sun, Y. Huo, Rate dependence of temperature fields and energy dissipations in non-static pseudoelasticity. Continuum Mech. Thermodyn. 24(4–6), 675–695 (2012)

    ADS  Google Scholar 

  100. L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature. Science 287(5457), 1463–1466 (2000)

    ADS  Google Scholar 

  101. D.G. Eskin, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog. Mater. Sci. 49(5), 629–711 (2004)

    Google Scholar 

  102. J. Campbell, Castings (Butterworth-Heinemann, Oxford, 1991)

    Google Scholar 

  103. B. Chen, D. Penwell, L.R. Benedetti, R. Jeanloz, M.B. Kruger, Particle-size effect on the compressibility of nanocrystalline alumina. Phys. Rev. B 66(14), 144101 (2002)

    ADS  Google Scholar 

  104. S.B. Qadri, J. Yang, B.R. Ratna, E.F. Skelton, J.Z. Hu, Pressure induced structural transitions in nanometer size particles of PbS. Appl. Phys. Lett. 69(15), 2205–2207 (1996)

    ADS  Google Scholar 

  105. M.R. Gallas, G.J. Piermarini, Bulk modulus and Youngs modulus of nanocrystalline gamma-alumina. J. Am. Ceram. Soc. 77(11), 2917–2920 (1994)

    Google Scholar 

  106. J. Zhao, G.R. Hearne, M. Maaza, F. Laher-Lacour, M.J. Witcomb, T. Le Bihan, M. Mezouar, Compressibility of nanostructured alumina phases determined from synchrotron X-ray diffraction studies at high pressure. J. Appl. Phys. 90(7), 3280–3285 (2001)

    ADS  Google Scholar 

  107. N. Ono, R. Nowak, S. Miura, Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58(1–2), 39–43 (2004)

    Google Scholar 

  108. A. Duckham, D.Z. Zhang, D. Liang, V. Luzin, R.C. Cammarata, R.L. Leheny, C.L. Chien, T.P. Weihs, Temperature dependent mechanical properties of ultra-fine grained FeCo–2V. Acta Mater. 51(14), 4083–4093 (2003)

    Google Scholar 

  109. N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep.-Rev. Sec. Phys. Lett. 377(2–3), 81–279 (2003)

    Google Scholar 

  110. Z.S. Ma, S.G. Long, Y. Pan, Y.C. Zhou, Indentation depth dependence of the mechanical strength of Ni films. J. Appl. Phys. 103(4), 2885090 (2008)

    Google Scholar 

  111. A.C. Lund, T.G. Nieh, C.A. Schuh, Tension/compression strength asymmetry in a simulated nanocrystalline metal. Phys. Rev. B 69(1), 012101 (2004)

    ADS  Google Scholar 

  112. G. Abudukelimu, G. Guisbiers, M. Wautelet, Theoretical phase diagrams of nanowires. J. Mater. Res. 21(11), 2829–2834 (2006)

    ADS  Google Scholar 

  113. S.M. Clark, S.G. Prilliman, C.K. Erdonmez, A.P. Alivisatos, Size dependence of the pressure-induced gamma to alpha structural phase transition in iron oxide nanocrystals. Nanotechnology 16(12), 2813–2818 (2005)

    ADS  Google Scholar 

  114. K. Jacobs, D. Zaziski, E.C. Scher, A.B. Herhold, A.P. Alivisatos, Activation volumes for solid–solid transformations in nanocrystals. Science 293(5536), 1803–1806 (2001)

    ADS  Google Scholar 

  115. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)

    ADS  Google Scholar 

  116. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting-diode from Cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354–357 (1994)

    ADS  Google Scholar 

  117. S.H. Tolbert, A.P. Alivisatos, Size dependence of a first-order solid–solid phase-transition—the wurtzite to rock-salt transformation in CdSe nanocrystals. Science 265(5170), 373–376 (1994)

    ADS  Google Scholar 

  118. J.N. Wickham, A.B. Herhold, A.P. Alivisatos, Shape change as an indicator of mechanism in the high-pressure structural transformations of CdSe nanocrystals. Phys. Rev. Lett. 84(5), 923–926 (2000)

    ADS  Google Scholar 

  119. D. Zaziski, S. Prilliman, E.C. Scher, M. Casula, J. Wickham, S.M. Clark, A.P. Alivisatos, Critical size for fracture during solid–solid phase transformations. Nano Lett. 4(5), 943–946 (2004)

    ADS  Google Scholar 

  120. L. Manna, L.W. Wang, R. Cingolani, A.P. Alivisatos, First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: A model system for studying the anisotropic growth of CdSe nanocrystals. J. Phys. Chem. B 109(13), 6183–6192 (2005)

    Google Scholar 

  121. K. Jacobs, J. Wickham, A.P. Alivisatos, Threshold size for ambient metastability of rocksalt CdSe nanocrystals. J. Phys. Chem. B 106(15), 3759–3762 (2002)

    Google Scholar 

  122. Z.W. Wang, K. Finkelstein, C. Ma, Z.L. Wang, Structure stability, fracture, and tuning mechanism of CdSe nanobelts. Appl. Phys. Lett. 90(11), 2713172 (2007)

    Google Scholar 

  123. A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Melting in semiconductor nanocrystals. Science 256(5062), 1425–1427 (1992)

    ADS  Google Scholar 

  124. Z.W. Chen, C.Q. Sun, Y.C. Zhou, O.Y. Gang, Size dependence of the pressure-induced phase transition in nanocrystals. J. Chem. Phys. C 112(7), 2423–2427 (2008)

    Google Scholar 

  125. M. Grunwald, E. Rabani, C. Dellago, Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals. Phys. Rev. Lett. 96(25), 255701 (2006)

    ADS  Google Scholar 

  126. D. Zahn, Y. Grin, S. Leoni, Mechanism of the pressure-induced wurtzite to rocksalt transition of CdSe. Phys. Rev. B 72(6), 064110 (2005)

    ADS  Google Scholar 

  127. F. Shimojo, S. Kodiyalam, I. Ebbsjo, R.K. Kalia, A. Nakano, P. Vashishta, Atomistic mechanisms for wurtzite-to-rocksalt structural transformation in cadmium selenide under pressure. Phys. Rev. B 70(18), 184111 (2004)

    ADS  Google Scholar 

  128. B.J. Morgan, P.A. Madden, Pressure-driven sphalerite to rock salt transition in ionic nanocrystals: A simulation study. Nano Lett. 4(9), 1581–1585 (2004)

    ADS  Google Scholar 

  129. V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, P.F. McMillan, V.B. Prakapenka, G. Shen, B.C. Muddle, Size-dependent pressure-induced amorphization in nanoscale TiO2. Phys. Rev. Lett. 96(13), 135702 (2006)

    ADS  Google Scholar 

  130. M.S. Miao, W.R.L. Lambrecht, Universal transition state for high-pressure zinc blende to rocksalt phase transitions. Phys. Rev. Lett. 94(22), 225501 (2005)

    ADS  Google Scholar 

  131. F. Calvo, J.P.K. Doye, Pressure effects on the structure of nanoclusters. Phys. Rev. B 69(12), 125414 (2004)

    ADS  Google Scholar 

  132. C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Size dependence of structural metastability in semiconductor nanocrystals. Science 276(5311), 398–401 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Nanograins: II. Plasticity and Yield Stress. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_28

Download citation

Publish with us

Policies and ethics