Skip to main content
Log in

Latent mixture modeling for clustered data

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This article proposes a mixture modeling approach to estimating cluster-wise conditional distributions in clustered (grouped) data. We adapt the mixture-of-experts model to the latent distributions, and propose a model in which each cluster-wise density is represented as a mixture of latent experts with cluster-wise mixing proportions distributed as Dirichlet distribution. The model parameters are estimated by maximizing the marginal likelihood function using a newly developed Monte Carlo Expectation–Maximization algorithm. We also extend the model such that the distribution of cluster-wise mixing proportions depends on some cluster-level covariates. The finite sample performance of the proposed model is compared with some existing mixture modeling approaches as well as mixed effects models through the simulation studies. The proposed model is also illustrated with the posted land price data in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Demidenko, E.: Mixed Models: Theory and Applications. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  • Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. B 39, 1–38 (1977)

    MATH  Google Scholar 

  • Doornik, J.: Ox: Object Oriented Matrix Programming. Timberlake Consultants Press, London (2007)

    Google Scholar 

  • Geweke, J., Keane, M.: Smoothly mixing regressions. J. Econom. 138, 252–290 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hurn, M., Justel, A., Robert, C.P.: Estimating mixtures of regressions. J. Comput. Graph. Stat. 12, 55–79 (2003)

    Article  MathSciNet  Google Scholar 

  • Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3, 79–87 (1991)

    Article  Google Scholar 

  • Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 214, 181–214 (1994)

    Article  Google Scholar 

  • McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  • Ng, S.K., McLachlan, G.J.: Extension of mixture-of-experts networks for binary classification of hierarchical data. Artif. Intell. Med. 41, 57–67 (2007)

    Article  Google Scholar 

  • Ng, S.K., McLachlan, G.J.: Mixture models for clustering multilevel growth trajectories. Comput. Stat. Data Anal. 71, 43–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, H.D., McLachlan, G.J.: Laplace mixture of linear experts. Comput. Stat. Data Anal. 93, 177–191 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Rosen, O., Jiang, W., Tanner, M.A.: Mixtures of marginal models. Biometrika 87, 391–404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin, D.B., Wu, Y.: Modeling schizophrenic behavior using general mixture components. Biometrics 53, 243–261 (1997)

    Article  MATH  Google Scholar 

  • Shi, J.Q., Copas, J.: Publication bias and meta-analysis for 2\(\times \)2 tables: an average Markov chain Monte Carlo EM algorithm. J. R. Stat. Soc. B 64, 221–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, Z., Rosen, O., Sampson, A.R.: Multivariate Bernoulli mixture models with application to postmortem tissue studies in schizophrenia. Biometrics 63, 901–909 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, X., Qu, A.: Mixture modeling for longitudinal data. J. Comput. Graph. Stat. 25, 1117–1137 (2016)

    Article  MathSciNet  Google Scholar 

  • Vermunt, J.K.: A hierarchical mixture model for clustering three-way data sets. Comput. Stat. Data Anal. 51, 5368–5376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Villani, M., Kohn, R., Giordani, P.: Regression density estimation using smooth adaptive Gaussian mixtures. J. Econom. 153, 155–173 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Villani, M., Kohn, R., Nott, D.J.: Generalized smooth finite mixtures. J. Econom. 171, 121–133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, G.C.G., Tanner, M.A.: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithm. J. Am. Stat. Assoc. 85, 699–704 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Nos. [16H07406, 15K17036, 16K17101, 18K12754, 18K12757]. The computational results were obtained using Ox version 6.21 (Doornik 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shonosuke Sugasawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugasawa, S., Kobayashi, G. & Kawakubo, Y. Latent mixture modeling for clustered data. Stat Comput 29, 537–548 (2019). https://doi.org/10.1007/s11222-018-9821-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-018-9821-7

Keywords

Navigation