Skip to main content
Log in

GRBs and Fundamental Physics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Gamma-ray bursts (GRBs) are short and intense flashes at the cosmological distances, which are the most luminous explosions in the Universe. The high luminosities of GRBs make them detectable out to the edge of the visible universe. So, they are unique tools to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal evolution of the Universe. First, they can be used to constrain the history of cosmic acceleration and the evolution of dark energy in a redshift range hardly achievable by other cosmological probes. Second, long GRBs are believed to be formed by collapse of massive stars. So they can be used to derive the high-redshift star formation rate, which can not be probed by current observations. Moreover, the use of GRBs as cosmological tools could unveil the reionization history and metal evolution of the Universe, the intergalactic medium (IGM) properties and the nature of first stars in the early universe. But beyond that, the GRB high-energy photons can be applied to constrain Lorentz invariance violation (LIV) and to test Einstein’s Equivalence Principle (EEP). In this paper, we review the progress on the GRB cosmology and fundamental physics probed by GRBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Since the energies of photons arrived at the trigger time (\(\sim100~\mbox{keV}\)) are several orders of magnitude lower than those of high energy photons (\(\sim\mbox{GeV}\)), \(E_{\mathrm{h}}^{n}-E_{\mathrm{l}}^{n}\) in Eq. (31) can be approximated as \(E_{\mathrm{h}}^{n}\).

References

  • A.A. Abdo, M. Ackermann, M. Ajello, K. Asano, W.B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M.G. Baring et al., A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462, 331–334 (2009a). doi:10.1038/nature08574

    Article  ADS  Google Scholar 

  • A.A. Abdo, M. Ackermann, M. Arimoto, K. Asano, W.B. Atwood, M. Axelsson, L. Baldini, J. Ballet, D.L. Band, G. Barbiellini et al., Fermi observations of high-energy gamma-ray emission from GRB 080916C. Science 323, 1688 (2009b). doi:10.1126/science.1169101

    Article  ADS  Google Scholar 

  • T. Abel, G.L. Bryan, M.L. Norman, The formation of the first star in the Universe. Science 295, 93–98 (2002). doi:10.1126/science.295.5552.93

    Article  ADS  Google Scholar 

  • I.I. Agafonova, P. Molaro, S.A. Levshakov, J.L. Hou, First measurement of Mg isotope abundances at high redshifts and accurate estimate of \(\Delta\alpha/\alpha\). Astron. Astrophys. 529, 28 (2011). doi:10.1051/0004-6361/201016194

    Article  ADS  Google Scholar 

  • J. Alfaro, H.A. Morales-Técotl, L.F. Urrutia, Loop quantum gravity and light propagation. Phys. Rev. D 65(10), 103509 (2002). doi:10.1103/PhysRevD.65.103509

    Article  ADS  MathSciNet  Google Scholar 

  • S.W. Allen, R.W. Schmidt, H. Ebeling, A.C. Fabian, L. van Speybroeck, Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 353, 457–467 (2004). doi:10.1111/j.1365-2966.2004.08080.x

    Article  ADS  Google Scholar 

  • M.A. Alvarez, V. Bromm, P.R. Shapiro, The H II region of the first star. Astrophys. J. 639, 621–632 (2006). doi:10.1086/499578

    Article  ADS  Google Scholar 

  • L. Amati, The \(E_{\mathrm{p},\mathrm{i}}\mbox{--}E_{\mathrm{iso}}\) correlation in gamma-ray bursts: updated observational status, re-analysis and main implications. Mon. Not. R. Astron. Soc. 372, 233–245 (2006). doi:10.1111/j.1365-2966.2006.10840.x

    Article  ADS  Google Scholar 

  • L. Amati, M. Della Valle, Measuring cosmological parameters with gamma ray bursts. Int. J. Mod. Phys. D 22, 30028 (2013). doi:10.1142/S0218271813300280

    Article  ADS  Google Scholar 

  • L. Amati, F. Frontera, M. Tavani, J.J.M. in’t Zand, A. Antonelli, E. Costa, M. Feroci, C. Guidorzi, J. Heise, N. Masetti, E. Montanari, L. Nicastro, E. Palazzi, E. Pian, L. Piro, P. Soffitta, Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002). doi:10.1051/0004-6361:20020722

    Article  ADS  Google Scholar 

  • L. Amati, C. Guidorzi, F. Frontera, M. Della Valle, F. Finelli, R. Landi, E. Montanari, Measuring the cosmological parameters with the \(E_{\mathrm{p},\mathrm{i}}\mbox{--}E_{\mathrm{iso}}\) correlation of gamma-ray bursts. Mon. Not. R. Astron. Soc. 391, 577–584 (2008). doi:10.1111/j.1365-2966.2008.13943.x

    Article  ADS  Google Scholar 

  • G. Amelino-Camelia, Quantum-spacetime phenomenology. Living Rev. Relativ. 16, 5 (2013). doi:10.12942/lrr-2013-5

    Article  ADS  Google Scholar 

  • G. Amelino-Camelia, D.V. Ahluwalia, Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35–59 (2002). doi:10.1142/S0218271802001330

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity. Int. J. Mod. Phys. A 12, 607–623 (1997). doi:10.1142/S0217751X97000566

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Tests of quantum gravity from observations of \(\gamma\)-ray bursts. Nature 393, 763–765 (1998). doi:10.1038/31647

    Article  ADS  Google Scholar 

  • J.N. Bahcall, R.A. Wolf, Fine-structure transitions. Astrophys. J. 152, 701 (1968). doi:10.1086/149589

    Article  ADS  Google Scholar 

  • D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouveliotou, C. Meegan, R. Wilson, P. Lestrade, BATSE observations of gamma-ray burst spectra. I—Spectral diversity. Astrophys. J. 413, 281–292 (1993). doi:10.1086/172995

    Article  ADS  Google Scholar 

  • S. Basilakos, L. Perivolaropoulos, Testing gamma-ray bursts as standard candles. Mon. Not. R. Astron. Soc. 391, 411–419 (2008). doi:10.1111/j.1365-2966.2008.13894.x

    Article  ADS  Google Scholar 

  • E. Berger, Short-duration gamma-ray bursts. Annu. Rev. Astron. Astrophys. 52, 43–105 (2014). doi:10.1146/annurev-astro-081913-035926

    Article  ADS  Google Scholar 

  • O. Bertolami, P.T. Silva, Gamma-ray bursts as dark energy-matter probes in the context of the generalized Chaplygin gas model. Mon. Not. R. Astron. Soc. 365, 1149–1159 (2006). doi:10.1111/j.1365-2966.2005.09765.x

    Article  ADS  Google Scholar 

  • B. Bertotti, L. Iess, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003). doi:10.1038/nature01997

    Article  ADS  Google Scholar 

  • J.S. Bloom, D.A. Frail, R. Sari, The prompt energy release of gamma-ray bursts using a cosmological k-correction. Astron. J. 121, 2879–2888 (2001). doi:10.1086/321093

    Article  ADS  Google Scholar 

  • J.S. Bloom, D.A. Frail, S.R. Kulkarni, Gamma-ray burst energetics and the gamma-ray burst Hubble diagram: promises and limitations. Astrophys. J. 594, 674–683 (2003). doi:10.1086/377125

    Article  ADS  Google Scholar 

  • J.S. Bloom, N.R. Butler, D.A. Perley, Gamma-ray bursts, classified physically, in AIP Conference Proceedings, ed. by M. Galassi, D. Palmer, E. Fenimore American Institute of Physics Conference Series, vol. 1000, 2008, pp. 11–15. doi:10.1063/1.2943423

    Chapter  Google Scholar 

  • R.J. Bouwens, G.D. Illingworth, M. Franx, R.-R. Chary, G.R. Meurer, C.J. Conselice, H. Ford, M. Giavalisco, P. van Dokkum, UV continuum slope and dust obscuration from \(z\sim 6\) to \(z\sim 2\): the star formation rate density at high redshift. Astrophys. J. 705, 936–961 (2009). doi:10.1088/0004-637X/705/1/936

    Article  ADS  Google Scholar 

  • R.J. Bouwens, G.D. Illingworth, I. Labbe, P.A. Oesch, M. Trenti, C.M. Carollo, P.G. van Dokkum, M. Franx, M. Stiavelli, V. González, D. Magee, L. Bradley, A candidate redshift \(z\sim10\) galaxy and rapid changes in that population at an age of 500 Myr. Nature 469, 504–507 (2011). doi:10.1038/nature09717

    Article  ADS  Google Scholar 

  • V. Bromm, R.B. Larson, The first stars. Annu. Rev. Astron. Astrophys. 42, 79–118 (2004). doi:10.1146/annurev.astro.42.053102.134034

    Article  ADS  Google Scholar 

  • V. Bromm, A. Loeb, High-redshift gamma-ray bursts from population III progenitors. Astrophys. J. 642, 382–388 (2006). doi:10.1086/500799

    Article  ADS  Google Scholar 

  • V. Bromm, A. Loeb, GRB cosmology. ArXiv e-prints (2007)

  • V. Bromm, P.S. Coppi, R.B. Larson, Forming the first stars in the Universe: the fragmentation of primordial gas. Astrophys. J. Lett. 527, 5–8 (1999). doi:10.1086/312385

    Article  ADS  Google Scholar 

  • V. Bromm, A. Ferrara, P.S. Coppi, R.B. Larson, The fragmentation of pre-enriched primordial objects. Mon. Not. R. Astron. Soc. 328, 969–976 (2001). doi:10.1046/j.1365-8711.2001.04915.x

    Article  ADS  Google Scholar 

  • V. Bromm, P.S. Coppi, R.B. Larson, The formation of the first stars. I. The primordial star-forming cloud. Astrophys. J. 564, 23–51 (2002). doi:10.1086/323947

    Article  ADS  Google Scholar 

  • V. Bromm, N. Yoshida, L. Hernquist, C.F. McKee, The formation of the first stars and galaxies. Nature 459, 49–54 (2009). doi:10.1038/nature07990

    Article  ADS  Google Scholar 

  • M.A. Campisi, L.-X. Li, P. Jakobsson, Redshift distribution and luminosity function of long gamma-ray bursts from cosmological simulations. Mon. Not. R. Astron. Soc. 407, 1972–1980 (2010). doi:10.1111/j.1365-2966.2010.17044.x

    Article  ADS  Google Scholar 

  • M.A. Campisi, U. Maio, R. Salvaterra, B. Ciardi, Population III stars and the long gamma-ray burst rate. Mon. Not. R. Astron. Soc. 416, 2760–2767 (2011). doi:10.1111/j.1365-2966.2011.19238.x

    Article  ADS  Google Scholar 

  • X.-F. Cao, Y.-W. Yu, K.S. Cheng, X.-P. Zheng, The luminosity function of Swift long gamma-ray bursts. Mon. Not. R. Astron. Soc. 416, 2174–2181 (2011). doi:10.1111/j.1365-2966.2011.19194.x

    Article  ADS  Google Scholar 

  • S. Capozziello, L. Izzo, Cosmography by gamma ray bursts. Astron. Astrophys. 490, 31–36 (2008). doi:10.1051/0004-6361:200810337

    Article  ADS  MATH  Google Scholar 

  • V.F. Cardone, S. Capozziello, M.G. Dainotti, An updated gamma-ray bursts Hubble diagram. Mon. Not. R. Astron. Soc. 400, 775–790 (2009). doi:10.1111/j.1365-2966.2009.15456.x

    Article  ADS  Google Scholar 

  • K.S. Cheng, Y.-W. Yu, T. Harko, High-redshift gamma-ray bursts: observational signatures of superconducting cosmic strings? Phys. Rev. Lett. 104(24), 241102 (2010). doi:10.1103/PhysRevLett.104.241102

    Article  ADS  Google Scholar 

  • K.S. Cheng, Y.W. Yu, T. Harko, Cheng, Yu, and Harko reply. Phys. Rev. Lett. 106(25), 259002 (2011). doi:10.1103/PhysRevLett.106.259002

    Article  ADS  Google Scholar 

  • B. Ciardi, A. Loeb, Expected number and flux distribution of gamma-ray burst afterglows with high redshifts. Astrophys. J. 540, 687–696 (2000). doi:10.1086/309384

    Article  ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, R.S. Klessen, V. Bromm, Gravitational fragmentation in turbulent primordial gas and the initial mass function of population III stars. Astrophys. J. 727, 110 (2011). doi:10.1088/0004-637X/727/2/110

    Article  ADS  Google Scholar 

  • B.E. Cobb, C.D. Bailyn, P.G. van Dokkum, P. Natarajan, SN 2006aj and the nature of low-luminosity gamma-ray bursts. Astrophys. J. Lett. 645, 113–116 (2006). doi:10.1086/506271

    Article  ADS  Google Scholar 

  • D. Coward, Open issues with the gamma-ray burst redshift distribution. New Astron. Rev. 51, 539–546 (2007). doi:10.1016/j.newar.2007.03.003

    Article  ADS  Google Scholar 

  • Z.G. Dai, F.Y. Wang, Recent progress on GRB cosmology. Adv. Space Res. 40, 1244–1249 (2007). doi:10.1016/j.asr.2007.01.009

    Article  ADS  MathSciNet  Google Scholar 

  • Z.G. Dai, E.W. Liang, D. Xu, Constraining \(\varOmega_{M}\) and dark energy with gamma-ray bursts. Astrophys. J. Lett. 612, 101–104 (2004). doi:10.1086/424694

    Article  ADS  Google Scholar 

  • F. Daigne, E.M. Rossi, R. Mochkovitch, The redshift distribution of Swift gamma-ray bursts: evidence for evolution. Mon. Not. R. Astron. Soc. 372, 1034–1042 (2006). doi:10.1111/j.1365-2966.2006.10837.x

    Article  ADS  Google Scholar 

  • R. Davé, The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? Mon. Not. R. Astron. Soc. 385, 147–160 (2008). doi:10.1111/j.1365-2966.2008.12866.x

    Article  ADS  Google Scholar 

  • R.S. de Souza, N. Yoshida, K. Ioka, Populations III.1 and III.2 gamma-ray bursts: constraints on the event rate for future radio and X-ray surveys. Astron. Astrophys. 533, 32 (2011). doi:10.1051/0004-6361/201117242

    Article  Google Scholar 

  • M. Demianski, E. Piedipalumbo, Standardizing the gamma-ray bursts with the Amati \(E_{\mathrm{p},\mathrm{i}}\mbox{--}E_{\mathrm{iso}}\) relation: the updated Hubble diagram and implications for cosmography. Mon. Not. R. Astron. Soc. 415, 3580–3590 (2011). doi:10.1111/j.1365-2966.2011.18975.x

    Article  ADS  Google Scholar 

  • M. Demianski, E. Piedipalumbo, C. Rubano, The gamma-ray bursts Hubble diagram in quintessential cosmological models. Mon. Not. R. Astron. Soc. 411, 1213–1222 (2011). doi:10.1111/j.1365-2966.2010.17751.x

    Article  ADS  Google Scholar 

  • T. Di Girolamo, R. Catena, M. Vietri, G. Di Sciascio, Can gamma-ray bursts constrain quintessence? J. Cosmol. Astropart. Phys. 4, 8 (2005). doi:10.1088/1475-7516/2005/04/008

    Article  Google Scholar 

  • B. Efron, V. Petrosian, A simple test of independence for truncated data with applications to redshift surveys. Astrophys. J. 399, 345–352 (1992). doi:10.1086/171931

    Article  ADS  Google Scholar 

  • D.J. Eisenstein, I. Zehavi, D.W. Hogg, R. Scoccimarro, M.R. Blanton, R.C. Nichol, R. Scranton, H.-J. Seo, M. Tegmark, Z. Zheng, S.F. Anderson, J. Annis, N. Bahcall, J. Brinkmann, S. Burles, F.J. Castander, A. Connolly, I. Csabai, M. Doi, M. Fukugita, J.A. Frieman, K. Glazebrook, J.E. Gunn, J.S. Hendry, G. Hennessy, Z. Ivezić, S. Kent, G.R. Knapp, H. Lin, Y.-S. Loh, R.H. Lupton, B. Margon, T.A. McKay, A. Meiksin, J.A. Munn, A. Pope, M.W. Richmond, D. Schlegel, D.P. Schneider, K. Shimasaku, C. Stoughton, M.A. Strauss, M. SubbaRao, A.S. Szalay, I. Szapudi, D.L. Tucker, B. Yanny, D.G. York, Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005). doi:10.1086/466512

    Article  ADS  Google Scholar 

  • J. Elliott, J. Greiner, S. Khochfar, P. Schady, J.L. Johnson, A. Rau, The long \(\gamma\)-ray burst rate and the correlation with host galaxy properties. Astron. Astrophys. 539, 113 (2012). doi:10.1051/0004-6361/201118561

    Article  ADS  Google Scholar 

  • J. Ellis, N.E. Mavromatos, Probes of Lorentz violation. Astropart. Phys. 43, 50–55 (2013). doi:10.1016/j.astropartphys.2012.05.004

    Article  ADS  Google Scholar 

  • J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, Quantum-gravity analysis of gamma-ray bursts using wavelets. Astron. Astrophys. 402, 409–424 (2003). doi:10.1051/0004-6361:20030263

    Article  ADS  MATH  Google Scholar 

  • J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, E.K.G. Sarkisyan, Robust limits on Lorentz violation from gamma-ray bursts. Astropart. Phys. 25, 402–411 (2006). doi:10.1016/j.astropartphys.2006.04.001

    Article  ADS  Google Scholar 

  • J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, E.K.G. Sarkisyan, Corrigendum to “Robust limits on Lorentz violation from gamma-ray bursts” [Astropart. Phys. 25, 402 (2006)]. Astropart. Phys. 29, 158–159 (2008). doi:10.1016/j.astropartphys.2007.12.003

    Article  ADS  Google Scholar 

  • X. Fan, C.L. Carilli, B. Keating, Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44, 415–462 (2006). doi:10.1146/annurev.astro.44.051905.092514

    Article  ADS  Google Scholar 

  • E.E. Fenimore, E. Ramirez-Ruiz, Redshifts for 220 BATSE gamma-ray bursts determined by variability and the cosmological consequences. ArXiv Astrophysics e-prints (2000)

  • C. Firmani, G. Ghisellini, G. Ghirlanda, V. Avila-Reese, A new method optimized to use gamma-ray bursts as cosmic rulers. Mon. Not. R. Astron. Soc. 360, 1–5 (2005). doi:10.1111/j.1745-3933.2005.00023.x

    Article  ADS  Google Scholar 

  • C. Firmani, G. Ghisellini, V. Avila-Reese, G. Ghirlanda, Discovery of a tight correlation among the prompt emission properties of long gamma-ray bursts. Mon. Not. R. Astron. Soc. 370, 185–197 (2006). doi:10.1111/j.1365-2966.2006.10445.x

    Article  ADS  Google Scholar 

  • D.A. Frail, S.R. Kulkarni, R. Sari, S.G. Djorgovski, J.S. Bloom, T.J. Galama, D.E. Reichart, E. Berger, F.A. Harrison, P.A. Price, S.A. Yost, A. Diercks, R.W. Goodrich, F. Chaffee, Beaming in gamma-ray bursts: evidence for a standard energy reservoir. Astrophys. J. Lett. 562, 55–58 (2001). doi:10.1086/338119

    Article  ADS  Google Scholar 

  • A.S. Fruchter, A.J. Levan, L. Strolger, P.M. Vreeswijk, S.E. Thorsett, D. Bersier, I. Burud, J.M. Castro Cerón, A.J. Castro-Tirado, C. Conselice, T. Dahlen, H.C. Ferguson, J.P.U. Fynbo, P.M. Garnavich, R.A. Gibbons, J. Gorosabel, T.R. Gull, J. Hjorth, S.T. Holland, C. Kouveliotou, Z. Levay, M. Livio, M.R. Metzger, P.E. Nugent, L. Petro, E. Pian, J.E. Rhoads, A.G. Riess, K.C. Sahu, A. Smette, N.R. Tanvir, R.A.M.J. Wijers, S.E. Woosley, Long \(\gamma\)-ray bursts and core-collapse supernovae have different environments. Nature 441, 463–468 (2006). doi:10.1038/nature04787

    Article  ADS  Google Scholar 

  • S.R. Furlanetto, A. Loeb, Metal absorption lines as probes of the intergalactic medium prior to the reionization epoch. Astrophys. J. 588, 18–34 (2003). doi:10.1086/374045

    Article  ADS  Google Scholar 

  • J.P.U. Fynbo, D. Malesani, P. Jakobsson, Long gamma-ray burst host galaxies and their environments, in Gamma-Ray Bursts. Cambridge Astrophysics Series, vol. 51 (2012), pp. 269–301. doi:10.1017/CBO9780511980336.014

    Chapter  Google Scholar 

  • A. Gal-Yam, D.B. Fox, P.A. Price, E.O. Ofek, M.R. Davis, D.C. Leonard, A.M. Soderberg, B.P. Schmidt, K.M. Lewis, B.A. Peterson, S.R. Kulkarni, E. Berger, S.B. Cenko, R. Sari, K. Sharon, D. Frail, D.-S. Moon, P.J. Brown, A. Cucchiara, F. Harrison, T. Piran, S.E. Persson, P.J. McCarthy, B.E. Penprase, R.A. Chevalier, A.I. MacFadyen, A novel explosive process is required for the \(\gamma\)-ray burst GRB 060614. Nature 444, 1053–1055 (2006). doi:10.1038/nature05373

    Article  ADS  Google Scholar 

  • R. Gambini, J. Pullin, Nonstandard optics from quantum space-time. Phys. Rev. D 59(12), 124021 (1999). doi:10.1103/PhysRevD.59.124021

    Article  ADS  MathSciNet  Google Scholar 

  • H. Gao, N. Liang, Z.-H. Zhu, Calibration of GRB luminosity relations with cosmography. Int. J. Mod. Phys. B 21, 50016 (2012). doi:10.1142/S0218271812500162

    ADS  MATH  Google Scholar 

  • H. Gao, X.-F. Wu, P. Mészáros, Cosmic transients test Einstein’s equivalence principle out to GeV energies. Astrophys. J. 810, 121 (2015). doi:10.1088/0004-637X/810/2/121

    Article  ADS  Google Scholar 

  • J.P. Gardner, J.C. Mather, M. Clampin, R. Doyon, M.A. Greenhouse, H.B. Hammel, J.B. Hutchings, P. Jakobsen, S.J. Lilly, K.S. Long, J.I. Lunine, M.J. McCaughrean, M. Mountain, J. Nella, G.H. Rieke, M.J. Rieke, H.-W. Rix, E.P. Smith, G. Sonneborn, M. Stiavelli, H.S. Stockman, R.A. Windhorst, G.S. Wright, The James Webb space telescope. Space Sci. Rev. 123, 485–606 (2006). doi:10.1007/s11214-006-8315-7

    Article  ADS  Google Scholar 

  • N. Gehrels, Confidence limits for small numbers of events in astrophysical data. Astrophys. J. 303, 336–346 (1986). doi:10.1086/164079

    Article  ADS  Google Scholar 

  • N. Gehrels, G. Chincarini, P. Giommi, K.O. Mason, J.A. Nousek, A.A. Wells, N.E. White, S.D. Barthelmy, D.N. Burrows, L.R. Cominsky, K.C. Hurley, F.E. Marshall, P. Mészáros, P.W.A. Roming, L. Angelini, L.M. Barbier, T. Belloni, S. Campana, P.A. Caraveo, M.M. Chester, O. Citterio, T.L. Cline, M.S. Cropper, J.R. Cummings, A.J. Dean, E.D. Feigelson, E.E. Fenimore, D.A. Frail, A.S. Fruchter, G.P. Garmire, K. Gendreau, G. Ghisellini, J. Greiner, J.E. Hill, S.D. Hunsberger, H.A. Krimm, S.R. Kulkarni, P. Kumar, F. Lebrun, N.M. Lloyd-Ronning, C.B. Markwardt, B.J. Mattson, R.F. Mushotzky, J.P. Norris, J. Osborne, B. Paczynski, D.M. Palmer, H.-S. Park, A.M. Parsons, J. Paul, M.J. Rees, C.S. Reynolds, J.E. Rhoads, T.P. Sasseen, B.E. Schaefer, A.T. Short, A.P. Smale, I.A. Smith, L. Stella, G. Tagliaferri, T. Takahashi, M. Tashiro, L.K. Townsley, J. Tueller, M.J.L. Turner, M. Vietri, W. Voges, M.J. Ward, R. Willingale, F.M. Zerbi, W.W. Zhang, The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004). doi:10.1086/422091

    Article  ADS  Google Scholar 

  • N. Gehrels, J.P. Norris, S.D. Barthelmy, J. Granot, Y. Kaneko, C. Kouveliotou, C.B. Markwardt, P. Mészáros, E. Nakar, J.A. Nousek, P.T. O’Brien, M. Page, D.M. Palmer, A.M. Parsons, P.W.A. Roming, T. Sakamoto, C.L. Sarazin, P. Schady, M. Stamatikos, S.E. Woosley, A new \(\gamma\)-ray burst classification scheme from GRB060614. Nature 444, 1044–1046 (2006). doi:10.1038/nature05376

    Article  ADS  Google Scholar 

  • N. Gehrels, E. Ramirez-Ruiz, D.B. Fox, Gamma-ray bursts in the Swift era. Annu. Rev. Astron. Astrophys. 47, 567–617 (2009). doi:10.1146/annurev.astro.46.060407.145147

    Article  ADS  Google Scholar 

  • G. Ghirlanda, Advances on GRB as cosmological tools, in AIP Conference Proceedings, ed. by G. Giobbi, A. Tornambe, G. Raimondo, M. Limongi, L.A. Antonelli, N. Menci, E. Brocato American Institute of Physics Conference Series, vol. 1111, 2009, pp. 579–586. doi:10.1063/1.3141613

    Chapter  Google Scholar 

  • G. Ghirlanda, G. Ghisellini, D. Lazzati, The collimation-corrected gamma-ray burst energies correlate with the peak energy of their \(\nu F_{\nu}\) spectrum. Astrophys. J. 616, 331–338 (2004a). doi:10.1086/424913

    Article  ADS  Google Scholar 

  • G. Ghirlanda, G. Ghisellini, D. Lazzati, C. Firmani, Gamma-ray bursts: new rulers to measure the Universe. Astrophys. J. Lett. 613, 13–16 (2004b). doi:10.1086/424915

    Article  ADS  Google Scholar 

  • G. Ghirlanda, G. Ghisellini, C. Firmani, Gamma-ray bursts as standard candles to constrain the cosmological parameters. New J. Phys. 8, 123 (2006). doi:10.1088/1367-2630/8/7/123

    Article  ADS  Google Scholar 

  • S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott, Monitoring stellar orbits around the massive black hole in the galactic center. Astrophys. J. 692, 1075–1109 (2009). doi:10.1088/0004-637X/692/2/1075

    Article  ADS  Google Scholar 

  • L.J. Gou, P. Mészáros, T. Abel, B. Zhang, Detectability of long gamma-ray burst afterglows from very high redshifts. Astrophys. J. 604, 508–520 (2004). doi:10.1086/382061

    Article  ADS  Google Scholar 

  • J.F. Graham, A.S. Fruchter, L.J. Kewley, E.M. Levesque, A.J. Levan, N.R. Tanvir, D.E. Reichart, M. Nysewander, Unusually high metallicity host of the dark LGRB 051022, in AIP Conference Proceedings, ed. by C. Meegan, C. Kouveliotou, N. Gehrels American Institute of Physics Conference Series, vol. 1133, 2009, pp. 269–272. doi:10.1063/1.3155900

    Chapter  Google Scholar 

  • T.H. Greif, J.L. Johnson, R.S. Klessen, V. Bromm, The observational signature of the first HII regions. Mon. Not. R. Astron. Soc. 399, 639–649 (2009). doi:10.1111/j.1365-2966.2009.15336.x

    Article  ADS  Google Scholar 

  • T.H. Greif, S.C.O. Glover, V. Bromm, R.S. Klessen, The first galaxies: chemical enrichment, mixing, and star formation. Astrophys. J. 716, 510–520 (2010). doi:10.1088/0004-637X/716/1/510

    Article  ADS  Google Scholar 

  • D. Guetta, T. Piran, Do long duration gamma ray bursts follow star formation? J. Cosmol. Astropart. Phys. 7, 3 (2007). doi:10.1088/1475-7516/2007/07/003

    Article  ADS  Google Scholar 

  • D. Guetta, T. Piran, E. Waxman, The luminosity and angular distributions of long-duration gamma-ray bursts. Astrophys. J. 619, 412–419 (2005). doi:10.1086/423125

    Article  ADS  Google Scholar 

  • J.-M. Hao, Y.-F. Yuan, Is the metallicity of the progenitor of long gamma-ray bursts really low? Astrophys. J. 772, 42 (2013). doi:10.1088/0004-637X/772/1/42

    Article  ADS  Google Scholar 

  • D.H. Hartmann, Probing cosmic chemical evolution with GRBs. New Astron. Rev. 52, 450–453 (2008). doi:10.1016/j.newar.2008.06.028

    Article  ADS  Google Scholar 

  • A. Heger, S.E. Woosley, The nucleosynthetic signature of population III. Astrophys. J. 567, 532–543 (2002). doi:10.1086/338487

    Article  ADS  Google Scholar 

  • A. Heger, S.E. Woosley, Nucleosynthesis and evolution of massive metal-free stars. Astrophys. J. 724, 341–373 (2010). doi:10.1088/0004-637X/724/1/341

    Article  ADS  Google Scholar 

  • A. Heger, C.L. Fryer, S.E. Woosley, N. Langer, D.H. Hartmann, How massive single stars end their life. Astrophys. J. 591, 288–300 (2003). doi:10.1086/375341

    Article  ADS  Google Scholar 

  • R. Hirschi, G. Meynet, A. Maeder, Stellar evolution with rotation. XIII. Predicted GRB rates at various Z. Astron. Astrophys. 443, 581–591 (2005). doi:10.1051/0004-6361:20053329

    Article  ADS  Google Scholar 

  • J. Hjorth, J. Sollerman, P. Møller, J.P.U. Fynbo, S.E. Woosley, C. Kouveliotou, N.R. Tanvir, J. Greiner, M.I. Andersen, A.J. Castro-Tirado, J.M. Castro Cerón, A.S. Fruchter, J. Gorosabel, P. Jakobsson, L. Kaper, S. Klose, N. Masetti, H. Pedersen, K. Pedersen, E. Pian, E. Palazzi, J.E. Rhoads, E. Rol, E.P.J. van den Heuvel, P.M. Vreeswijk, D. Watson, R.A.M.J. Wijers, A very energetic supernova associated with the \(\gamma\)-ray burst of 29 March 2003. Nature 423, 847–850 (2003). doi:10.1038/nature01750

    Article  ADS  Google Scholar 

  • D.E. Holz, Lensing and high-z supernova surveys. Astrophys. J. Lett. 506, 1–5 (1998). doi:10.1086/311631

    Article  ADS  Google Scholar 

  • A.M. Hopkins, J.F. Beacom, On the normalization of the cosmic star formation history. Astrophys. J. 651, 142–154 (2006). doi:10.1086/506610

    Article  ADS  Google Scholar 

  • T. Hosokawa, K. Omukai, N. Yoshida, H.W. Yorke, Protostellar feedback halts the growth of the first stars in the Universe. Science 334, 1250 (2011). doi:10.1126/science.1207433

    Article  ADS  Google Scholar 

  • G. Hurier, N. Aghanim, M. Douspis, E. Pointecouteau, Measurement of the \(T_{\mathrm{CMB}}\) evolution from the Sunyaev-Zel’dovich effect. Astron. Astrophys. 561, 143 (2014). doi:10.1051/0004-6361/201322632

    Article  ADS  Google Scholar 

  • L. Izzo, M. Muccino, E. Zaninoni, L. Amati, M. Della Valle, New measurements of \(\varOmega_{m}\) from gamma-ray bursts. ArXiv e-prints (2015)

  • U. Jacob, T. Piran, Lorentz-violation-induced arrival delays of cosmological particles. J. Cosmol. Astropart. Phys. 1, 31 (2008). doi:10.1088/1475-7516/2008/01/031

    Article  ADS  Google Scholar 

  • R. Jimenez, T. Piran, Reconciling the gamma-ray burst rate and star formation histories. Astrophys. J. 773, 126 (2013). doi:10.1088/0004-637X/773/2/126

    Article  ADS  Google Scholar 

  • R. Jimenez, L. Verde, T. Treu, D. Stern, Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the cosmic microwave background. Astrophys. J. 593, 622–629 (2003). doi:10.1086/376595

    Article  ADS  Google Scholar 

  • J.L. Johnson, T.H. Greif, V. Bromm, Occurrence of metal-free galaxies in the early Universe. Mon. Not. R. Astron. Soc. 388, 26–38 (2008). doi:10.1111/j.1365-2966.2008.13381.x

    Article  ADS  Google Scholar 

  • J.L. Johnson, T.H. Greif, V. Bromm, R.S. Klessen, J. Ippolito, The first galaxies: signatures of the initial starburst. Mon. Not. R. Astron. Soc. 399, 37–47 (2009). doi:10.1111/j.1365-2966.2009.15158.x

    Article  ADS  Google Scholar 

  • D.O. Jones, S.A. Rodney, A.G. Riess, B. Mobasher, T. Dahlen, C. McCully, T.F. Frederiksen, S. Casertano, J. Hjorth, C.R. Keeton, A. Koekemoer, L.-G. Strolger, T.G. Wiklind, P. Challis, O. Graur, B. Hayden, B. Patel, B.J. Weiner, A.V. Filippenko, P. Garnavich, S.W. Jha, R.P. Kirshner, H.C. Ferguson, N.A. Grogin, D. Kocevski, The discovery of the most distant known type Ia supernova at redshift 1.914. Astrophys. J. 768, 166 (2013). doi:10.1088/0004-637X/768/2/166

    Article  ADS  Google Scholar 

  • P.R. Kafle, S. Sharma, G.F. Lewis, J. Bland-Hawthorn, Kinematics of the stellar halo and the mass distribution of the Milky Way using blue horizontal branch stars. Astrophys. J. 761, 98 (2012). doi:10.1088/0004-637X/761/2/98

    Article  ADS  Google Scholar 

  • N. Kawai, G. Kosugi, K. Aoki, T. Yamada, T. Totani, K. Ohta, M. Iye, T. Hattori, W. Aoki, H. Furusawa, K. Hurley, K.S. Kawabata, N. Kobayashi, Y. Komiyama, Y. Mizumoto, K. Nomoto, J. Noumaru, R. Ogasawara, R. Sato, K. Sekiguchi, Y. Shirasaki, M. Suzuki, T. Takata, T. Tamagawa, H. Terada, J. Watanabe, Y. Yatsu, A. Yoshida, An optical spectrum of the afterglow of a \(\gamma\)-ray burst at a redshift of \(z = 6.295\). Nature 440, 184–186 (2006). doi:10.1038/nature04498

    Article  ADS  Google Scholar 

  • J.A. King, J.K. Webb, M.T. Murphy, V.V. Flambaum, R.F. Carswell, M.B. Bainbridge, M.R. Wilczynska, F.E. Koch, Spatial variation in the fine-structure constant—new results from VLT/UVES. Mon. Not. R. Astron. Soc. 422, 3370–3414 (2012). doi:10.1111/j.1365-2966.2012.20852.x

    Article  ADS  Google Scholar 

  • M.D. Kistler, H. Yüksel, J.F. Beacom, K.Z. Stanek, An unexpectedly Swift rise in the gamma-ray burst rate. Astrophys. J. Lett. 673, 119–122 (2008). doi:10.1086/527671

    Article  ADS  Google Scholar 

  • M.D. Kistler, H. Yüksel, J.F. Beacom, A.M. Hopkins, J.S.B. Wyithe, The star formation rate in the reionization era as indicated by gamma-ray bursts. Astrophys. J. Lett. 705, 104–108 (2009). doi:10.1088/0004-637X/705/2/L104

    Article  ADS  Google Scholar 

  • D. Kocevski, A.A. West, M. Modjaz, Modeling the GRB host galaxy mass distribution: are GRBs unbiased tracers of star formation? Astrophys. J. 702, 377–385 (2009). doi:10.1088/0004-637X/702/1/377

    Article  ADS  Google Scholar 

  • Y. Kodama, D. Yonetoku, T. Murakami, S. Tanabe, R. Tsutsui, T. Nakamura, Gamma-ray bursts in suggest that the time variation of the dark energy is small. Mon. Not. R. Astron. Soc. 391, 1–4 (2008). doi:10.1111/j.1745-3933.2008.00508.x

    Article  ADS  Google Scholar 

  • E. Komatsu, K.M. Smith, J. Dunkley, C.L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M.R. Nolta, L. Page, D.N. Spergel, M. Halpern, R.S. Hill, A. Kogut, M. Limon, S.S. Meyer, N. Odegard, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011). doi:10.1088/0067-0049/192/2/18

    Article  ADS  Google Scholar 

  • S.S. Komissarov, M.V. Barkov, Supercollapsars and their X-ray bursts. Mon. Not. R. Astron. Soc. 402, 25–29 (2010). doi:10.1111/j.1745-3933.2009.00792.x

    Article  ADS  Google Scholar 

  • V.A. Kostelecký, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683–685 (1989). doi:10.1103/PhysRevD.39.683

    Article  ADS  Google Scholar 

  • C. Kouveliotou, C.A. Meegan, G.J. Fishman, N.P. Bhat, M.S. Briggs, T.M. Koshut, W.S. Paciesas, G.N. Pendleton, Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 413, 101–104 (1993). doi:10.1086/186969

    Article  ADS  Google Scholar 

  • L.M. Krauss, S. Tremaine, Test of the weak equivalence principle for neutrinos and photons. Phys. Rev. Lett. 60, 176 (1988). doi:10.1103/PhysRevLett.60.176

    Article  ADS  Google Scholar 

  • R.-P. Kudritzki, J. Puls, Winds from hot stars. Annu. Rev. Astron. Astrophys. 38, 613–666 (2000). doi:10.1146/annurev.astro.38.1.613

    Article  ADS  Google Scholar 

  • P. Kumar, B. Zhang, The physics of gamma-ray bursts and relativistic jets. Phys. Rep. 561, 1–109 (2015). doi:10.1016/j.physrep.2014.09.008

    Article  ADS  Google Scholar 

  • D.Q. Lamb, D.E. Reichart, Gamma-ray bursts as a probe of the very high redshift universe. Astrophys. J. 536, 1–18 (2000). doi:10.1086/308918

    Article  ADS  Google Scholar 

  • S.B. Lambert, C. Le Poncin-Lafitte, Determining the relativistic parameter \(\gamma\) using very long baseline interferometry. Astron. Astrophys. 499, 331–335 (2009). doi:10.1051/0004-6361/200911714

    Article  ADS  MATH  Google Scholar 

  • S.B. Lambert, C. Le Poncin-Lafitte, Improved determination of \(\gamma\) by VLBI. Astron. Astrophys. 529, 70 (2011). doi:10.1051/0004-6361/201016370

    Article  ADS  Google Scholar 

  • N. Langer, C.A. Norman, On the collapsar model of long gamma-ray bursts: constraints from cosmic metallicity evolution. Astrophys. J. Lett. 638, 63–66 (2006). doi:10.1086/500363

    Article  ADS  Google Scholar 

  • T. Le, C.D. Dermer, On the redshift distribution of gamma-ray bursts in the Swift era. Astrophys. J. 661, 394–415 (2007). doi:10.1086/513460

    Article  ADS  Google Scholar 

  • E.M. Levesque, The host galaxies of long-duration gamma-ray bursts. Publ. Astron. Soc. Pac. 126, 1–14 (2014). doi:10.1086/674531

    Article  ADS  Google Scholar 

  • E.M. Levesque, L.J. Kewley, E. Berger, H.J. Zahid, The host galaxies of gamma-ray bursts. II. A mass-metallicity relation for long-duration gamma-ray burst host galaxies. Astron. J. 140, 1557–1566 (2010). doi:10.1088/0004-6256/140/5/1557

    Article  ADS  Google Scholar 

  • L.-X. Li, Variation of the Amati relation with cosmological redshift: a selection effect or an evolution effect? Mon. Not. R. Astron. Soc. 379, 55–59 (2007). doi:10.1111/j.1745-3933.2007.00333.x

    Article  ADS  Google Scholar 

  • L.-X. Li, Star formation history up to \(z = 7.4\): implications for gamma-ray bursts and cosmic metallicity evolution. Mon. Not. R. Astron. Soc. 388, 1487–1500 (2008). doi:10.1111/j.1365-2966.2008.13488.x

    Article  ADS  Google Scholar 

  • H. Li, J.-Q. Xia, J. Liu, G.-B. Zhao, Z.-H. Fan, X. Zhang, Overcoming the circular problem for gamma-ray bursts in cosmological global-fitting analysis. Astrophys. J. 680, 92–99 (2008). doi:10.1086/529582

    Article  ADS  Google Scholar 

  • E. Liang, B. Zhang, Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications. Astrophys. J. 633, 611–623 (2005). doi:10.1086/491594

    Article  ADS  Google Scholar 

  • E. Liang, B. Zhang, Calibration of gamma-ray burst luminosity indicators. Mon. Not. R. Astron. Soc. 369, 37–41 (2006). doi:10.1111/j.1745-3933.2006.00169.x

    Article  ADS  Google Scholar 

  • E. Liang, B. Zhang, F. Virgili, Z.G. Dai, Low-luminosity gamma-ray bursts as a unique population: luminosity function, local rate, and beaming factor. Astrophys. J. 662, 1111–1118 (2007). doi:10.1086/517959

    Article  ADS  Google Scholar 

  • N. Liang, W.K. Xiao, Y. Liu, S.N. Zhang, A cosmology-independent calibration of gamma-ray burst luminosity relations and the Hubble diagram. Astrophys. J. 685, 354–360 (2008). doi:10.1086/590903

    Article  ADS  Google Scholar 

  • H.-N. Lin, X. Li, S. Wang, Z. Chang, Are long gamma-ray bursts standard candles? Mon. Not. R. Astron. Soc. 453, 128–132 (2015). doi:10.1093/mnras/stv1624

    Article  ADS  Google Scholar 

  • N.M. Lloyd-Ronning, C.L. Fryer, E. Ramirez-Ruiz, Cosmological aspects of gamma-ray bursts: luminosity evolution and an estimate of the star formation rate at high redshifts. Astrophys. J. 574, 554–565 (2002). doi:10.1086/341059

    Article  ADS  Google Scholar 

  • M.J. Longo, New precision tests of the Einstein equivalence principle from SN1987A. Phys. Rev. Lett. 60, 173–175 (1988). doi:10.1103/PhysRevLett.60.173

    Article  ADS  Google Scholar 

  • H.-J. Lü, E.-W. Liang, B.-B. Zhang, B. Zhang, A new classification method for gamma-ray bursts. Astrophys. J. 725, 1965–1970 (2010). doi:10.1088/0004-637X/725/2/1965

    Article  ADS  Google Scholar 

  • G. Luzzi, M. Shimon, L. Lamagna, Y. Rephaeli, M. De Petris, A. Conte, S. De Gregori, E.S. Battistelli, Redshift dependence of the cosmic microwave background temperature from Sunyaev-Zeldovich measurements. Astrophys. J. 705, 1122–1128 (2009). doi:10.1088/0004-637X/705/2/1122

    Article  ADS  Google Scholar 

  • D. Lynden-Bell, A method of allowing for known observational selection in small samples applied to 3CR quasars. Mon. Not. R. Astron. Soc. 155, 95 (1971)

    Article  ADS  Google Scholar 

  • A.I. MacFadyen, S.E. Woosley, Collapsars: gamma-ray bursts and explosions in “Failed Supernovae”. Astrophys. J. 524, 262–289 (1999). doi:10.1086/307790

    Article  ADS  Google Scholar 

  • D. Macpherson, D.M. Coward, M.G. Zadnik, The potential for detecting gamma-ray burst afterglows from population III stars with the next generation of infrared telescopes. Astrophys. J. 779, 73 (2013). doi:10.1088/0004-637X/779/1/73

    Article  ADS  Google Scholar 

  • U. Maio, B. Ciardi, K. Dolag, L. Tornatore, S. Khochfar, The transition from population III to population II-I star formation. Mon. Not. R. Astron. Soc. 407, 1003–1015 (2010). doi:10.1111/j.1365-2966.2010.17003.x

    Article  ADS  Google Scholar 

  • P.A. Mazzali, J. Deng, K. Nomoto, D.N. Sauer, E. Pian, N. Tominaga, M. Tanaka, K. Maeda, A.V. Filippenko, A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 442, 1018–1020 (2006). doi:10.1038/nature05081

    Article  ADS  Google Scholar 

  • C.F. McKee, J.C. Tan, The formation of the first stars. II. Radiative feedback processes and implications for the initial mass function. Astrophys. J. 681, 771–797 (2008). doi:10.1086/587434

    Article  ADS  Google Scholar 

  • P.J. McMillan, Mass models of the Milky Way. Mon. Not. R. Astron. Soc. 414, 2446–2457 (2011). doi:10.1111/j.1365-2966.2011.18564.x

    Article  ADS  Google Scholar 

  • R.A. Mesler, D.J. Whalen, J. Smidt, C.L. Fryer, N.M. Lloyd-Ronning, Y.M. Pihlström, The first gamma-ray bursts in the Universe. Astrophys. J. 787, 91 (2014). doi:10.1088/0004-637X/787/1/91

    Article  ADS  Google Scholar 

  • P. Mészáros, Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2321 (2006). doi:10.1088/0034-4885/69/8/R01

    Article  Google Scholar 

  • P. Mészáros, M.J. Rees, Population III gamma-ray bursts. Astrophys. J. 715, 967–971 (2010). doi:10.1088/0004-637X/715/2/967

    Article  ADS  Google Scholar 

  • P. Molaro, S.A. Levshakov, M. Dessauges-Zavadsky, S. D’Odorico, The cosmic microwave background radiation temperature at \(z_{\mathrm{abs}}=3.025\) toward QSO 0347-3819. Astron. Astrophys. 381, 64–67 (2002). doi:10.1051/0004-6361:20011698

    Article  ADS  Google Scholar 

  • P. Molaro, M. Centurión, J.B. Whitmore, T.M. Evans, M.T. Murphy, I.I. Agafonova, P. Bonifacio, S. D’Odorico, S.A. Levshakov, S. Lopez, C.J.A.P. Martins, P. Petitjean, H. Rahmani, D. Reimers, R. Srianand, G. Vladilo, M. Wendt, The UVES large program for testing fundamental physics I. Bounds on a change in \(\alpha\) towards quasar HE 2217-2818. Astron. Astrophys. 555, 68 (2013). doi:10.1051/0004-6361/201321351

    Article  ADS  Google Scholar 

  • E. Mörtsell, J. Sollerman, On the future of gamma-ray burst cosmology. J. Cosmol. Astropart. Phys. 6, 9 (2005). doi:10.1088/1475-7516/2005/06/009

    Article  Google Scholar 

  • M.T. Murphy, J.K. Webb, V.V. Flambaum, Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra. Mon. Not. R. Astron. Soc. 345, 609–638 (2003). doi:10.1046/j.1365-8711.2003.06970.x

    Article  ADS  Google Scholar 

  • H. Nagakura, H. Ito, K. Kiuchi, S. Yamada, Jet propagations, breakouts, and photospheric emissions in collapsing massive progenitors of long-duration gamma-ray bursts. Astrophys. J. 731, 80 (2011). doi:10.1088/0004-637X/731/2/80

    Article  ADS  Google Scholar 

  • D. Nakauchi, Y. Suwa, T. Sakamoto, K. Kashiyama, T. Nakamura, Long-duration X-ray flash and X-ray-rich gamma-ray bursts from low-mass population III stars. Astrophys. J. 759, 128 (2012). doi:10.1088/0004-637X/759/2/128

    Article  ADS  Google Scholar 

  • P. Natarajan, B. Albanna, J. Hjorth, E. Ramirez-Ruiz, N. Tanvir, R. Wijers, The redshift distribution of gamma-ray bursts revisited. Mon. Not. R. Astron. Soc. 364, 8–12 (2005). doi:10.1111/j.1745-3933.2005.00094.x

    Article  ADS  Google Scholar 

  • Y. Niino, Revisiting the metallicity of long-duration gamma-ray burst host galaxies: the role of chemical inhomogeneity within galaxies. Mon. Not. R. Astron. Soc. 417, 567–572 (2011). doi:10.1111/j.1365-2966.2011.19299.x

    Article  ADS  Google Scholar 

  • J.P. Norris, G.F. Marani, J.T. Bonnell, Connection between energy-dependent lags and peak luminosity in gamma-ray bursts. Astrophys. J. 534, 248–257 (2000). doi:10.1086/308725

    Article  ADS  Google Scholar 

  • P. Noterdaeme, P. Petitjean, C. Ledoux, S. López, R. Srianand, S.D. Vergani, A translucent interstellar cloud at \(z=2.69\) CO, \(\mathrm{H}_{2}\), and HD in the line-of-sight to SDSS J123714.60 + 064759.5. Astron. Astrophys. 523, 80 (2010). doi:10.1051/0004-6361/201015147

    Article  ADS  Google Scholar 

  • M. Oguri, K. Takahashi, Gravitational lensing effects on the gamma-ray burst Hubble diagram. Phys. Rev. D 73(12), 123002 (2006). doi:10.1103/PhysRevD.73.123002

    Article  ADS  Google Scholar 

  • S.P. Oh, Probing the dark ages with metal absorption lines. Mon. Not. R. Astron. Soc. 336, 1021–1029 (2002). doi:10.1046/j.1365-8711.2002.05859.x

    Article  ADS  Google Scholar 

  • B.D. Oppenheimer, R. Davé, K. Finlator, Tracing the re-ionization-epoch intergalactic medium with metal absorption lines. Mon. Not. R. Astron. Soc. 396, 729–758 (2009). doi:10.1111/j.1365-2966.2009.14771.x

    Article  ADS  Google Scholar 

  • J. Paul, J. Wei, S. Basa, S.-N. Zhang, The Chinese-French SVOM mission for gamma-ray burst studies. C. R. Phys. 12, 298–308 (2011). doi:10.1016/j.crhy.2011.01.009

    Article  ADS  Google Scholar 

  • S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, T.S.C. Project, Measurements of \(\varOmega\) and \(\varLambda\) from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999). doi:10.1086/307221

    Article  ADS  Google Scholar 

  • P. Petitjean, S.D. Vergani, Gamma-ray bursts as probes of the distant Universe. C. R. Phys. 12, 288–297 (2011). doi:10.1016/j.crhy.2011.01.007

    Article  ADS  Google Scholar 

  • V. Petrosian, E. Kitanidis, D. Kocevski, Cosmological evolution of long gamma-ray bursts and star formation rate. Astrophys. J. 806, 44 (2015). doi:10.1088/0004-637X/806/1/44

    Article  ADS  Google Scholar 

  • E. Pian, P.A. Mazzali, N. Masetti, P. Ferrero, S. Klose, E. Palazzi, E. Ramirez-Ruiz, S.E. Woosley, C. Kouveliotou, J. Deng, A.V. Filippenko, R.J. Foley, J.P.U. Fynbo, D.A. Kann, W. Li, J. Hjorth, K. Nomoto, F. Patat, D.N. Sauer, J. Sollerman, P.M. Vreeswijk, E.W. Guenther, A. Levan, P. O’Brien, N.R. Tanvir, R.A.M.J. Wijers, C. Dumas, O. Hainaut, D.S. Wong, D. Baade, L. Wang, L. Amati, E. Cappellaro, A.J. Castro-Tirado, S. Ellison, F. Frontera, A.S. Fruchter, J. Greiner, K. Kawabata, C. Ledoux, K. Maeda, P. Møller, L. Nicastro, E. Rol, R. Starling, An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006). doi:10.1038/nature05082

    Article  ADS  Google Scholar 

  • C. Porciani, P. Madau, On the association of gamma-ray bursts with massive stars: implications for number counts and lensing statistics. Astrophys. J. 548, 522–531 (2001). doi:10.1086/319027

    Article  ADS  Google Scholar 

  • P.A. Price, A. Songaila, L.L. Cowie, J. Bell Burnell, E. Berger, A. Cucchiara, D.B. Fox, I. Hook, S.R. Kulkarni, B. Penprase, K.C. Roth, B. Schmidt, Properties of a gamma-ray burst host galaxy at \(z\sim5\). Astrophys. J. Lett. 663, 57–60 (2007). doi:10.1086/520047

    Article  ADS  Google Scholar 

  • J.X. Prochaska, H.-W. Chen, M. Dessauges-Zavadsky, J.S. Bloom, Probing the interstellar medium near star-forming regions with gamma-ray burst afterglow spectroscopy: gas, metals, and dust. Astrophys. J. 666, 267–280 (2007). doi:10.1086/520042

    Article  ADS  Google Scholar 

  • J.X. Prochaska, Y. Sheffer, D.A. Perley, J.S. Bloom, L.A. Lopez, M. Dessauges-Zavadsky, H.-W. Chen, A.V. Filippenko, M. Ganeshalingam, W. Li, A.A. Miller, D. Starr, The first positive detection of molecular gas in a GRB host galaxy. Astrophys. J. Lett. 691, 27–32 (2009). doi:10.1088/0004-637X/691/1/L27

    Article  ADS  Google Scholar 

  • S. Qi, T. Lu, A new luminosity relation for gamma-ray bursts and its implication. Astrophys. J. 717, 1274–1278 (2010). doi:10.1088/0004-637X/717/2/1274

    Article  ADS  Google Scholar 

  • S. Qi, F.-Y. Wang, T. Lu, Constraining the evolution of dark energy with type Ia supernovae and gamma-ray bursts. Astron. Astrophys. 483, 49–55 (2008a). doi:10.1051/0004-6361:20079329

    Article  ADS  Google Scholar 

  • S. Qi, F.-Y. Wang, T. Lu, Gamma-ray burst contributions to constraining the evolution of dark energy. Astron. Astrophys. 487, 853–855 (2008b). doi:10.1051/0004-6361:200809954

    Article  ADS  Google Scholar 

  • S. Qi, T. Lu, F.-Y. Wang, Deviation from the cosmological constant or systematic errors? Mon. Not. R. Astron. Soc. 398, 78–82 (2009). doi:10.1111/j.1745-3933.2009.00713.x

    Article  ADS  Google Scholar 

  • S.-F. Qin, E.-W. Liang, R.-J. Lu, J.-Y. Wei, S.-N. Zhang, Simulations on high-z long gamma-ray burst rate. Mon. Not. R. Astron. Soc. 406, 558–565 (2010). doi:10.1111/j.1365-2966.2010.16691.x

    Article  ADS  Google Scholar 

  • H. Rahmani, M. Wendt, R. Srianand, P. Noterdaeme, P. Petitjean, P. Molaro, J.B. Whitmore, M.T. Murphy, M. Centurion, H. Fathivavsari, S. D’Odorico, T.M. Evans, S.A. Levshakov, S. Lopez, C.J.A.P. Martins, D. Reimers, G. Vladilo, The UVES large program for testing fundamental physics—II. Constraints on a change in \(\mu\) towards quasar HE 0027-1836. Mon. Not. R. Astron. Soc. 435, 861–878 (2013). doi:10.1093/mnras/stt1356

    Article  ADS  Google Scholar 

  • J.E. Rhoads, How to tell a jet from a balloon: a proposed test for beaming in gamma-ray bursts. Astrophys. J. Lett. 487, 1–4 (1997). doi:10.1086/310876

    Article  ADS  Google Scholar 

  • A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). doi:10.1086/300499

    Article  ADS  Google Scholar 

  • B.E. Robertson, R.S. Ellis, Connecting the gamma ray burst rate and the cosmic star formation history: implications for reionization and galaxy evolution. Astrophys. J. 744, 95 (2012). doi:10.1088/0004-637X/744/2/95

    Article  ADS  Google Scholar 

  • R. Salvaterra, G. Chincarini, The gamma-ray burst luminosity function in the light of the Swift 2 year data. Astrophys. J. Lett. 656, 49–52 (2007). doi:10.1086/512606

    Article  ADS  Google Scholar 

  • R. Salvaterra, M. Della Valle, S. Campana, G. Chincarini, S. Covino, P. D’Avanzo, A. Fernández-Soto, C. Guidorzi, F. Mannucci, R. Margutti, C.C. Thöne, L.A. Antonelli, S.D. Barthelmy, M. de Pasquale, V. D’Elia, F. Fiore, D. Fugazza, L.K. Hunt, E. Maiorano, S. Marinoni, F.E. Marshall, E. Molinari, J. Nousek, E. Pian, J.L. Racusin, L. Stella, L. Amati, G. Andreuzzi, G. Cusumano, E.E. Fenimore, P. Ferrero, P. Giommi, D. Guetta, S.T. Holland, K. Hurley, G.L. Israel, J. Mao, C.B. Markwardt, N. Masetti, C. Pagani, E. Palazzi, D.M. Palmer, S. Piranomonte, G. Tagliaferri, V. Testa, GRB090423 at a redshift of \(z\sim8.1\). Nature 461, 1258–1260 (2009). doi:10.1038/nature08445

    Article  ADS  Google Scholar 

  • R. Salvaterra, S. Campana, S.D. Vergani, S. Covino, P. D’Avanzo, D. Fugazza, G. Ghirlanda, G. Ghisellini, A. Melandri, L. Nava, B. Sbarufatti, H. Flores, S. Piranomonte, G. Tagliaferri, A complete sample of bright Swift long gamma-ray bursts. I. Sample presentation, luminosity function and evolution. Astrophys. J. 749, 68 (2012). doi:10.1088/0004-637X/749/1/68

    Article  ADS  Google Scholar 

  • R. Sari, Linear polarization and proper motion in the afterglow of beamed gamma-ray bursts. Astrophys. J. Lett. 524, 43–46 (1999). doi:10.1086/312294

    Article  ADS  Google Scholar 

  • S. Savaglio, K. Glazebrook, D. Le Borgne, S. Juneau, R.G. Abraham, H.-W. Chen, D. Crampton, P.J. McCarthy, R.G. Carlberg, R.O. Marzke, K. Roth, I. Jørgensen, R. Murowinski, The Gemini deep survey. VII. The redshift evolution of the mass-metallicity relation. Astrophys. J. 635, 260–279 (2005). doi:10.1086/497331

    Article  ADS  Google Scholar 

  • B.E. Schaefer, The Hubble diagram to redshift 6 from 69 gamma-ray bursts. Astrophys. J. 660, 16–46 (2007). doi:10.1086/511742

    Article  ADS  Google Scholar 

  • B.E. Schaefer, C.L. Gerardy, P. Höflich, A. Panaitescu, R. Quimby, J. Mader, G.J. Hill, P. Kumar, J.C. Wheeler, M. Eracleous, S. Sigurdsson, P. Mészáros, B. Zhang, L. Wang, F.V. Hessman, V. Petrosian, GRB 021004: a massive progenitor star surrounded by shells. Astrophys. J. 588, 387–399 (2003). doi:10.1086/373896

    Article  ADS  Google Scholar 

  • M. Schmidt, Luminosities and space densities of gamma-ray bursts. Astrophys. J. Lett. 523, 117–120 (1999). doi:10.1086/312281

    Article  ADS  Google Scholar 

  • R. Schneider, A. Ferrara, P. Natarajan, K. Omukai, First stars, very massive black holes, and metals. Astrophys. J. 571, 30–39 (2002). doi:10.1086/339917

    Article  ADS  Google Scholar 

  • R. Schneider, K. Omukai, A.K. Inoue, A. Ferrara, Fragmentation of star-forming clouds enriched with the first dust. Mon. Not. R. Astron. Soc. 369, 1437–1444 (2006). doi:10.1111/j.1365-2966.2006.10391.x

    Article  ADS  Google Scholar 

  • I.I. Shapiro, Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964). doi:10.1103/PhysRevLett.13.789

    Article  ADS  MathSciNet  Google Scholar 

  • F.H. Shu, S. Lizano, D. Galli, J. Cantó, G. Laughlin, Self-similar champagne flows in H II regions. Astrophys. J. 580, 969–979 (2002). doi:10.1086/343859

    Article  ADS  Google Scholar 

  • C. Sivaram, Constraints on the photon mass and charge and test of equivalence principle from GRB 990123. Bull. Astron. Soc. India 27, 627 (1999)

    ADS  Google Scholar 

  • A.M. Soderberg, S.R. Kulkarni, E. Nakar, E. Berger, P.B. Cameron, D.B. Fox, D. Frail, A. Gal-Yam, R. Sari, S.B. Cenko, M. Kasliwal, R.A. Chevalier, T. Piran, P.A. Price, B.P. Schmidt, G. Pooley, D.-S. Moon, B.E. Penprase, E. Ofek, A. Rau, N. Gehrels, J.A. Nousek, D.N. Burrows, S.E. Persson, P.J. McCarthy, Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442, 1014–1017 (2006). doi:10.1038/nature05087

    Article  ADS  Google Scholar 

  • J. Sollerman, G. Östlin, J.P.U. Fynbo, J. Hjorth, A. Fruchter, K. Pedersen, On the nature of nearby GRB/SN host galaxies. New Astron. 11, 103–115 (2005). doi:10.1016/j.newast.2005.06.004

    Article  ADS  Google Scholar 

  • D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, L. Page, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003). doi:10.1086/377226

    Article  ADS  Google Scholar 

  • R. Srianand, H. Chand, P. Petitjean, B. Aracil, Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. Phys. Rev. Lett. 92(12), 121302 (2004). doi:10.1103/PhysRevLett.92.121302

    Article  ADS  Google Scholar 

  • R. Srianand, H. Chand, P. Petitjean, B. Aracil, Srianand et al. reply. Phys. Rev. Lett. 99(23), 239002 (2007). doi:10.1103/PhysRevLett.99.239002

    Article  ADS  Google Scholar 

  • R. Srianand, P. Noterdaeme, C. Ledoux, P. Petitjean, First detection of CO in a high-redshift damped Lyman-\(\alpha\) system. Astron. Astrophys. 482, 39–42 (2008). doi:10.1051/0004-6361:200809727

    Article  ADS  Google Scholar 

  • R. Srianand, N. Gupta, P. Petitjean, P. Noterdaeme, C. Ledoux, C.J. Salter, D.J. Saikia, Search for cold gas in \(z>2\) damped Ly\(\alpha\) systems: 21-cm and \(\mathrm{H}_{2}\) absorption. Mon. Not. R. Astron. Soc. 421, 651–665 (2012). doi:10.1111/j.1365-2966.2011.20342.x

    ADS  Google Scholar 

  • A. Stacy, V. Bromm, A. Loeb, Rotation speed of the first stars. Mon. Not. R. Astron. Soc. 413, 543–553 (2011). doi:10.1111/j.1365-2966.2010.18152.x

    Article  ADS  Google Scholar 

  • A. Stacy, T.H. Greif, V. Bromm, The first stars: mass growth under protostellar feedback. Mon. Not. R. Astron. Soc. 422, 290–309 (2012). doi:10.1111/j.1365-2966.2012.20605.x

    Article  ADS  Google Scholar 

  • K.Z. Stanek, T. Matheson, P.M. Garnavich, P. Martini, P. Berlind, N. Caldwell, P. Challis, W.R. Brown, R. Schild, K. Krisciunas, M.L. Calkins, J.C. Lee, N. Hathi, R.A. Jansen, R. Windhorst, L. Echevarria, D.J. Eisenstein, B. Pindor, E.W. Olszewski, P. Harding, S.T. Holland, D. Bersier, Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. Lett. 591, 17–20 (2003). doi:10.1086/376976

    Article  ADS  Google Scholar 

  • K.Z. Stanek, O.Y. Gnedin, J.F. Beacom, A.P. Gould, J.A. Johnson, J.A. Kollmeier, M. Modjaz, M.H. Pinsonneault, R. Pogge, D.H. Weinberg, Protecting life in the Milky Way: metals keep the GRBs away. Acta Astron. 56, 333–345 (2006)

    ADS  Google Scholar 

  • K.M. Svensson, A.J. Levan, N.R. Tanvir, A.S. Fruchter, L.-G. Strolger, The host galaxies of core-collapse supernovae and gamma-ray bursts. Mon. Not. R. Astron. Soc. 405, 57–76 (2010). doi:10.1111/j.1365-2966.2010.16442.x

    ADS  Google Scholar 

  • W.-W. Tan, X.-F. Cao, Y.-W. Yu, Determining the luminosity function of Swift long gamma-ray bursts with pseudo-redshifts. Astrophys. J. Lett. 772, 8 (2013). doi:10.1088/2041-8205/772/1/L8

    Article  ADS  Google Scholar 

  • M. Tegmark, J. Silk, M.J. Rees, A. Blanchard, T. Abel, F. Palla, How small were the first cosmological objects? Astrophys. J. 474, 1 (1997). doi:10.1086/303434

    Article  ADS  Google Scholar 

  • K. Toma, T. Sakamoto, P. Mészáros, Population III gamma-ray burst afterglows: constraints on stellar masses and external medium densities. Astrophys. J. 731, 127 (2011). doi:10.1088/0004-637X/731/2/127

    Article  ADS  Google Scholar 

  • T. Totani, Cosmological gamma-ray bursts and evolution of galaxies. Astrophys. J. Lett. 486, 71–74 (1997). doi:10.1086/310853

    Article  ADS  Google Scholar 

  • M. Trenti, R. Perna, R. Jimenez, The luminosity and stellar mass functions of GRB host galaxies: insight into the metallicity bias. Astrophys. J. 802, 13 (2015). doi:10.1088/0004-637X/802/2/103

    Article  ADS  Google Scholar 

  • J.-P. Uzan, N. Aghanim, Y. Mellier, Distance duality relation from x-ray and Sunyaev-Zel’dovich observations of clusters. Phys. Rev. D 70(8), 083533 (2004). doi:10.1103/PhysRevD.70.083533

    Article  ADS  Google Scholar 

  • P. Valageas, Weak gravitational lensing effects on the determination of \(\varOmega_{m}\) and \(\varOmega_{\varLambda}\) from SNeIa. Astron. Astrophys. 354, 767–786 (2000)

    ADS  Google Scholar 

  • V. Vasileiou, A. Jacholkowska, F. Piron, J. Bolmont, C. Couturier, J. Granot, F.W. Stecker, J. Cohen-Tanugi, F. Longo, Constraints on Lorentz invariance violation from Fermi-large area telescope observations of gamma-ray bursts. Phys. Rev. D 87(12), 122001 (2013). doi:10.1103/PhysRevD.87.122001

    Article  ADS  Google Scholar 

  • J.S. Vink, A. de Koter, On the metallicity dependence of Wolf-Rayet winds. Astron. Astrophys. 442, 587–596 (2005). doi:10.1051/0004-6361:20052862

    Article  ADS  Google Scholar 

  • F.J. Virgili, B. Zhang, K. Nagamine, J.-H. Choi, Gamma-ray burst rate: high-redshift excess and its possible origins. Mon. Not. R. Astron. Soc. 417, 3025–3034 (2011). doi:10.1111/j.1365-2966.2011.19459.x

    Article  ADS  Google Scholar 

  • M. Visser, Jerk, snap and the cosmological equation of state. Class. Quantum Gravity 21, 2603–2615 (2004). doi:10.1088/0264-9381/21/11/006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V. Vitagliano, J.-Q. Xia, S. Liberati, M. Viel, High-redshift cosmography. J. Cosmol. Astropart. Phys. 3, 5 (2010). doi:10.1088/1475-7516/2010/03/005

    Article  ADS  Google Scholar 

  • P.M. Vreeswijk, C. Ledoux, A. Smette, S.L. Ellison, A.O. Jaunsen, M.I. Andersen, A.S. Fruchter, J.P.U. Fynbo, J. Hjorth, A. Kaufer, P. Møller, P. Petitjean, S. Savaglio, R.A.M.J. Wijers, Rapid-response mode VLT/UVES spectroscopy of GRB 060418. Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations. Astron. Astrophys. 468, 83–96 (2007). doi:10.1051/0004-6361:20066780

    Article  ADS  Google Scholar 

  • D. Wanderman, T. Piran, The luminosity function and the rate of Swift’s gamma-ray bursts. Mon. Not. R. Astron. Soc. 406, 1944–1958 (2010). doi:10.1111/j.1365-2966.2010.16787.x

    ADS  Google Scholar 

  • D. Wanderman, T. Piran, The rate, luminosity function and time delay of non-collapsar short GRBs. Mon. Not. R. Astron. Soc. 448, 3026–3037 (2015). doi:10.1093/mnras/stv123

    Article  ADS  Google Scholar 

  • Y. Wang, Model-independent distance measurements from gamma-ray bursts and constraints on dark energy. Phys. Rev. D 78(12), 123532 (2008). doi:10.1103/PhysRevD.78.123532

    Article  ADS  Google Scholar 

  • F.Y. Wang, Current constraints on early dark energy and growth index using latest observations. Astron. Astrophys. 543, 91 (2012). doi:10.1051/0004-6361/201219348

    Article  ADS  Google Scholar 

  • F.Y. Wang, The high-redshift star formation rate derived from gamma-ray bursts: possible origin and cosmic reionization. Astron. Astrophys. 556, 90 (2013). doi:10.1051/0004-6361/201321623

    Article  ADS  Google Scholar 

  • F.-Y. Wang, Z.-G. Dai, Constraining dark energy and cosmological transition redshift with type Ia supernovae. Chin. J. Astron. Astrophys. 6, 561–571 (2006a). doi:10.1088/1009-9271/6/5/08

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, Constraining the cosmological parameters and transition redshift with gamma-ray bursts and supernovae. Mon. Not. R. Astron. Soc. 368, 371–378 (2006b). doi:10.1111/j.1365-2966.2006.10108.x

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, High-redshift star formation rate up to \(z\sim8.3\) derived from gamma-ray bursts and influence of background cosmology. Mon. Not. R. Astron. Soc. 400, 10–14 (2009). doi:10.1111/j.1745-3933.2009.00751.x

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, An evolving stellar initial mass function and the gamma-ray burst redshift distribution. Astrophys. J. Lett. 727, 34 (2011a). doi:10.1088/2041-8205/727/2/L34

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, Weak gravitational lensing effects on cosmological parameters and dark energy from gamma-ray bursts. Astron. Astrophys. 536, 96 (2011b). doi:10.1051/0004-6361/201117517

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, Self-organized criticality in X-ray flares of gamma-ray-burst afterglows. Nat. Phys. 9, 465–467 (2013). doi:10.1038/nphys2670

    Article  Google Scholar 

  • F.Y. Wang, Z.G. Dai, Estimating the uncorrelated dark energy evolution in the Planck era. Phys. Rev. D 89(2), 023004 (2014a). doi:10.1103/PhysRevD.89.023004

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, Long GRBs are metallicity-biased tracers of star formation: evidence from host galaxies and redshift distribution. Astrophys. J. Suppl. Ser. 213, 15 (2014b). doi:10.1088/0067-0049/213/1/15

    Article  ADS  Google Scholar 

  • J.S. Wang, F.Y. Wang, Cosmological model of the interaction between dark matter and dark energy. Astron. Astrophys. 564, 137 (2014). doi:10.1051/0004-6361/201322606

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, Z.-H. Zhu, Measuring dark energy with gamma-ray bursts and other cosmological probes. Astrophys. J. 667, 1–10 (2007). doi:10.1086/520768

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, S. Qi, Probing the cosmographic parameters to distinguish between dark energy and modified gravity models. Astron. Astrophys. 507, 53–59 (2009). doi:10.1051/0004-6361/200911998

    Article  ADS  MATH  Google Scholar 

  • Y. Wang, Y.-Z. Fan, D.-M. Wei, Are GRB 090423 and similar bursts due to superconducting cosmic strings? Phys. Rev. Lett. 106(25), 259001 (2011a). doi:10.1103/PhysRevLett.106.259001

    Article  ADS  Google Scholar 

  • F.-Y. Wang, S. Qi, Z.-G. Dai, The updated luminosity correlations of gamma-ray bursts and cosmological implications. Mon. Not. R. Astron. Soc. 415, 3423–3433 (2011b). doi:10.1111/j.1365-2966.2011.18961.x

    Article  ADS  Google Scholar 

  • F.Y. Wang, V. Bromm, T.H. Greif, A. Stacy, Z.G. Dai, A. Loeb, K.S. Cheng, Probing pre-galactic metal enrichment with high-redshift gamma-ray bursts. Astrophys. J. 760, 27 (2012). doi:10.1088/0004-637X/760/1/27

    Article  ADS  Google Scholar 

  • F.Y. Wang, S.X. Yi, Z.G. Dai, Similar radiation mechanism in gamma-ray bursts and blazars: evidence from two luminosity correlations. Astrophys. J. Lett. 786, 8 (2014). doi:10.1088/2041-8205/786/1/L8

    Article  ADS  Google Scholar 

  • F.Y. Wang, Z.G. Dai, E.W. Liang, Gamma-ray burst cosmology. New Astron. Rev. 67, 1–17 (2015). doi:10.1016/j.newar.2015.03.001

    Article  ADS  Google Scholar 

  • H. Wei, Observational constraints on cosmological models with the updated long gamma-ray bursts. J. Cosmol. Astropart. Phys. 8, 20 (2010). doi:10.1088/1475-7516/2010/08/020

    Article  ADS  Google Scholar 

  • J.-J. Wei, X.-F. Wu, F. Melia, The gamma-ray burst Hubble diagram and its implications for cosmology. Astrophys. J. 772, 43 (2013). doi:10.1088/0004-637X/772/1/43

    Article  ADS  Google Scholar 

  • J.-J. Wei, X.-F. Wu, F. Melia, D.-M. Wei, L.-L. Feng, Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance evolution. Mon. Not. R. Astron. Soc. 439, 3329–3341 (2014). doi:10.1093/mnras/stu166

    Article  ADS  Google Scholar 

  • J.-J. Wei, Q.-B. Ma, X.-F. Wu, Utilizing the updated gamma-ray bursts and type Ia supernovae to constrain the Cardassian expansion model and dark energy. Adv. Astron. 2015, 20 (2015). doi:10.1155/2015/576093

    Article  ADS  Google Scholar 

  • R.A.M.J. Wijers, J.S. Bloom, J.S. Bagla, P. Natarajan, Gamma-ray bursts from stellar remnants—probing the universe at high redshift. Mon. Not. R. Astron. Soc. 294, 13–17 (1998). doi:10.1046/j.1365-8711.1998.01328.x

    Article  ADS  Google Scholar 

  • C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2006). doi:10.12942/lrr-2006-3

    Article  ADS  MATH  Google Scholar 

  • C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014). doi:10.12942/lrr-2014-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C. Wolf, P. Podsiadlowski, The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities. Mon. Not. R. Astron. Soc. 375, 1049–1058 (2007). doi:10.1111/j.1365-2966.2006.11373.x

    Article  ADS  Google Scholar 

  • S.E. Woosley, Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993). doi:10.1086/172359

    Article  ADS  Google Scholar 

  • S.E. Woosley, J.S. Bloom, The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006). doi:10.1146/annurev.astro.43.072103.150558

    Article  ADS  Google Scholar 

  • S.E. Woosley, A. Heger, The progenitor stars of gamma-ray bursts. Astrophys. J. 637, 914–921 (2006). doi:10.1086/498500

    Article  ADS  Google Scholar 

  • S.E. Woosley, T.A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181 (1995). doi:10.1086/192237

    Article  ADS  Google Scholar 

  • S.-W. Wu, D. Xu, F.-W. Zhang, D.-M. Wei, Gamma-ray bursts: the isotropic-equivalent-energy function and the cosmic formation rate. Mon. Not. R. Astron. Soc. 423, 2627–2632 (2012). doi:10.1111/j.1365-2966.2012.21068.x

    Article  ADS  Google Scholar 

  • J.S.B. Wyithe, A. Loeb, Reionization of hydrogen and helium by early stars and quasars. Astrophys. J. 586, 693–708 (2003). doi:10.1086/367721

    Article  ADS  Google Scholar 

  • J.-Q. Xia, V. Vitagliano, S. Liberati, M. Viel, Cosmography beyond standard candles and rulers. Phys. Rev. D 85(4), 043520 (2012). doi:10.1103/PhysRevD.85.043520

    Article  ADS  Google Scholar 

  • C.Y. Xu, D.M. Wei, The effect of the initial mass function on the burst rate of GRBs. Acta Astron. Sin. 49, 387–393 (2008)

    ADS  MathSciNet  Google Scholar 

  • D. Xu, Z.G. Dai, E.W. Liang, Can gamma-ray bursts be used to measure cosmology? A further analysis. Astrophys. J. 633, 603–610 (2005). doi:10.1086/466509

    Article  ADS  Google Scholar 

  • D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, A.K. Inoue, K. Ioka, Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophys. J. 609, 935–951 (2004). doi:10.1086/421285

    Article  ADS  Google Scholar 

  • S.-C. Yoon, N. Langer, Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astron. Astrophys. 443, 643–648 (2005). doi:10.1051/0004-6361:20054030

    Article  ADS  Google Scholar 

  • S.-C. Yoon, N. Langer, C. Norman, Single star progenitors of long gamma-ray bursts. I. Model grids and redshift dependent GRB rate. Astron. Astrophys. 460, 199–208 (2006). doi:10.1051/0004-6361:20065912

    Article  ADS  Google Scholar 

  • N. Yoshida, T. Abel, L. Hernquist, N. Sugiyama, Simulations of early structure formation: primordial gas clouds. Astrophys. J. 592, 645–663 (2003). doi:10.1086/375810

    Article  ADS  Google Scholar 

  • B. Yu, S. Qi, T. Lu, Gamma-ray burst luminosity relations: two-dimensional versus three-dimensional correlations. Astrophys. J. Lett. 705, 15–19 (2009). doi:10.1088/0004-637X/705/1/L15

    Article  ADS  Google Scholar 

  • Y.-W. Yu, K.S. Cheng, M.C. Chu, S. Yeung, Cosmic histories of star formation and reionization: an analysis with a power-law approximation. J. Cosmol. Astropart. Phys. 7, 23 (2012). doi:10.1088/1475-7516/2012/07/023

    Article  ADS  Google Scholar 

  • H. Yu, F.Y. Wang, Z.G. Dai, K.S. Cheng, An unexpectedly low-redshift excess of Swift gamma-ray burst rate. Astrophys. J. Suppl. Ser. 218, 13 (2015). doi:10.1088/0067-0049/218/1/13

    Article  ADS  Google Scholar 

  • H. Yüksel, M.D. Kistler, Enhanced cosmological GRB rates and implications for cosmogenic neutrinos. Phys. Rev. D 75(8), 083004 (2007). doi:10.1103/PhysRevD.75.083004

    Article  ADS  Google Scholar 

  • H. Yüksel, M.D. Kistler, J.F. Beacom, A.M. Hopkins, Revealing the high-redshift star formation rate with gamma-ray bursts. Astrophys. J. Lett. 683, 5–8 (2008). doi:10.1086/591449

    Article  ADS  Google Scholar 

  • B. Zhang, Astrophysics: a burst of new ideas. Nature 444, 1010–1011 (2006). doi:10.1038/4441010a

    Article  ADS  Google Scholar 

  • B. Zhang, Gamma-ray bursts in the Swift era. Chin. J. Astron. Astrophys. 7, 1–50 (2007). doi:10.1088/1009-9271/7/1/01

    Article  ADS  Google Scholar 

  • B. Zhang, Gamma-ray burst prompt emission. Int. J. Mod. Phys. B 23, 30002 (2014). doi:10.1142/S021827181430002X

    ADS  Google Scholar 

  • S. Zhang, B.-Q. Ma, Lorentz violation from gamma-ray bursts. Astropart. Phys. 61, 108–112 (2015). doi:10.1016/j.astropartphys.2014.04.008

    Article  ADS  Google Scholar 

  • B. Zhang, B.-B. Zhang, F.J. Virgili, E.-W. Liang, D.A. Kann, X.-F. Wu, D. Proga, H.-J. Lv, K. Toma, P. Mészáros, D.N. Burrows, P.W.A. Roming, N. Gehrels, Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: the cases of \(z = 6.7\) GRB 080913, \(z = 8.2\) GRB 090423, and some short/hard GRBs. Astrophys. J. 703, 1696–1724 (2009). doi:10.1088/0004-637X/703/2/1696

    Article  ADS  Google Scholar 

  • G.-B. Zhao, R.G. Crittenden, L. Pogosian, X. Zhang, Examining the evidence for dynamical dark energy. Phys. Rev. Lett. 109(17), 171301 (2012). doi:10.1103/PhysRevLett.109.171301

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program (“973” Program) of China (grants 2014CB845800 and 2013CB83490), the National Natural Science Foundation of China (grants 11422325, 11373022, 11033002, 11322328, and 11433009), the Excellent Youth Foundation of Jiangsu Province (BK20140016), and the Program for New Century Excellent Talents in University (grant No. NCET-13-0279). X.F. Wu was also partially supported by the One-Hundred-Talent Program, the Youth Innovation Promotion Association (2011231), and the Strategic Priority Research Program “The Emergence of Cosmological Structure” (grant No. XDB09000000) of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petitjean, P., Wang, F.Y., Wu, X.F. et al. GRBs and Fundamental Physics. Space Sci Rev 202, 195–234 (2016). https://doi.org/10.1007/s11214-016-0235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0235-6

Keywords

Navigation