Skip to main content
Log in

Accretion, Trapping and Binding of Sediment in Archean Stromatolites—Morphological Expression of the Antiquity of Life

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This paper reviews and discusses Archean stromatolite occurrences and their modes of growth in the context of sedimentary facies. Modes of sediment accretion and trapping and binding of sedimentary grains, together with the resulting morphology of stromatolites and microbial mats in the Archean are analysed, in order to show existing interaction between the growth patterns, morphology and facies association. Architectural elements of sediment arrangement in Archean stromatolites, together with the dependence of stromatolite distribution and morphology on sedimentary facies changes, clearly argue for a biological origin of stromatolitic lamination preserved in Archean cherts and carbonates. The observed sediment behaviour of laminae accretion and sediment precipitation, trapping and binding cannot be explained by abiogenic carbonate or silica precipitation from saturated solutions. The time-dependent, increasing complexity of stromatolitic structures in the Archean is an additional strong argument for biologic impact on stromatolite formation. Therefore, biogenic stromatolites and microbial mats were undoubtfully present at 3.5 Ga and occupied an increasingly wide range of sedimentary environments during the Archean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.C. Allwood, M.R. Walter, B.S. Kamber, C.P. Marshall, I.W. Burch, Stromatolite reef from the Early Archean era of Australia. Nature 441(8), 714–718 (2006)

    Article  ADS  Google Scholar 

  • A.C. Allwood, M.R. Walter, I.W. Burch, B.S. Kamber, 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambr. Res. 158, 198–227 (2007)

    Article  Google Scholar 

  • W. Altermann, The oldest fossils of Africa – a brief reappraisal of reports from the Archean. J. Afr. Earth Sci. 33, 427–436 (2001)

    Article  ADS  Google Scholar 

  • W. Altermann, The evolution of life and its impact on sedimentation, in Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems, ed. by W. Altermann, P.L. Corcoran. Special Publication International Association of Sedimentologists, vol. 33 (IAS, Blackwell, 2002), pp. 15–32

    Google Scholar 

  • W. Altermann, Precambrian stromatolites: Problems in definition, classification, morphology and stratigraphy, in The Precambrian Earth: Tempos and Events, ed. by P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, O. Catuneanu. Developments in Precambrian Geology (Elsevier, Amsterdam, 2004), pp. 564–574

    Google Scholar 

  • W. Altermann, The early Earth’s record of enigmatic cyanobacteria and supposed extremophilic bacteria at 3.8 to 2.5 Ga, in Algae and Cyanobacteria in Extreme Environment, ed. by J. Seckbach. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 11 (Springer, Heidelberg, 2007), Chap. 8

    Chapter  Google Scholar 

  • W. Altermann, J. Kazmierczak, A. Oren, D. Wright, Microbial calcification and its impact on the sedimentary rock record during 3.5 billion years of Earth history. Geobiology 4, 147–166 (2006)

    Article  Google Scholar 

  • W. Altermann, H.G. Herbig, Tidal flats deposits of the Lower Proterozoic Campbell Group along the southwestern margin of the Kaapvaal Craton, Northern Cape Province, South Africa. J. Afr. Earth Sci. 13(3–4), 415–435 (1991)

    Article  Google Scholar 

  • W. Altermann, D.R. Nelson, Sedimentation rates, basin analysis, and regional correlations of three Neoarchean and Paleoproterozoic sub-basins of the Kaapvaal Craton as inferred from precise U-Pb zircon ages from volcaniclastic sediments. Sediment. Geol. 120, 225–256 (1998)

    Article  ADS  Google Scholar 

  • W. Altermann, J.W. Schopf, Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambr. Res. 75, 65–90 (1995)

    Article  Google Scholar 

  • W. Altermann, H.P. Siegfried, Sedimentology and facies development of an Archean shelf—carbonate platform transition in the Kaapvaal Craton, as deduced from a deep borehole at Kathu, South Africa. J. Afr. Earth Sci. 24(3), 391–410 (1997)

    Article  Google Scholar 

  • S.M. Awramik, The history and significance of stromatolites, in Early Organic Evolution: Implications for Mineral and Energy Resources, ed. by M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy, P.A. Trudinger (Springer, Berlin, 1992), pp. 435–449

    Google Scholar 

  • S.M. Awramik, H.P. Buchheim, Late Archaean lacustrine carbonates, stromatolites, and transgression, in Proceedings of the Fourth International Archaean Symposium Abstract (2001), pp. 222–223

  • S.M. Awramik, M.A. Semikhatov, The relationship between morphology, microstructure, and microbiota in three vertically intergrading stromatolites from the Gunflint Iron Formation. Can. J. Earth Sci. 16, 2319–2330 (1979)

    Google Scholar 

  • J. Bertrand-Sarfati, Les stromatolites du Précambrien supérieur du Sahara nord occidental; inventaire, morphologie et microstructures des laminations. Corrélations stratigraphiques. Centre de Recherches sur les Zones Arides, Paris. Public. CNRS, Geol. 14 (1972), 240pp

  • N.J. Beukes, Facies relations, depositional environments and diagenesis in a major Early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup. South. Afr. Sediment. Geol. 54, 1–46 (1987)

    ADS  Google Scholar 

  • M. Black, The algal sediments of Andros Island, Bahamas. R. Soc. Phil. Trans. B 122, 169–192 (1933)

    Google Scholar 

  • M. Brasier, O. Green, J. Lindsay, A. Steele, Earth’s oldest (>3.5 Ga) fossils and the ‘early Eden hypothesis’: Questioning the evidence. Orig. Life Evol. Biosphere 34, 257–269 (2004)

    Article  ADS  Google Scholar 

  • M. Brasier, N. McLoughlin, O. Green, D. Wacey, A fresch look at the fossil evidence for early Archean cellular life. Phil. Trans. R. Soc. 361(B), 887–902 (2006)

    Google Scholar 

  • M.D. Brasier, O.R. Green, A.P. Jephcoat, A.K. Kleppe, M.J. Van Kranendonk, J.F. Lindsay, A. Steele, N.V. Grassineau, Questioning the evidence for earth’s oldest fossils. Nature 416, 76–81 (2002)

    Article  ADS  Google Scholar 

  • S.G. Buck, Stromatolite and ooid depositswithin the fluvial and lacustrine sediments of the Precambrian Ventersdorp Supergroup of South Africa. Precambr. Res. 12, 301–330 (1980)

    Article  Google Scholar 

  • R.V. Burne, L.S. Moore, Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios 2(3), 241–254 (1987)

    Article  Google Scholar 

  • F.H.A. Campbell, M.P. Cecile, Evolution of the Early Proterozoic Kilohigok Basin, Bathurst Inlet–Victoria Island, Northwest Territories. in Proterozoic Basins of Canada, ed. by F.H.A. Campbell. Geological Survey of Canada, paper 81-10, 1981, pp. 103–131

  • C.W. Clendenin, Tectonic influence on the evolution of the Early Proterozoic Transvaal sea. Unpubl. Ph.D. thesis, University Witwatersrand, 1989, 376pp

  • J.A. Donaldson, Aphebian stromatolites in Canada: Implications for stromatolite zonation, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976a), pp. 371–380

    Google Scholar 

  • J.A. Donaldson, Paleoecology of Conophyton and associated stromatolites in the Precambrian Dismal Lakes and Rae Groups, Canada, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976b), pp. 523–534

    Google Scholar 

  • C. Dupraz, A. Strasser, Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian), Swiss Jura Mountains. Facies 40, 101–130 (1999)

    Article  Google Scholar 

  • K.A. Eriksson, J.F. Truswell, Tidal flat associations from the lower Proterozoic carbonate sequence in South Africa. Sedimentology 21, 293–309 (1974)

    Article  ADS  Google Scholar 

  • K. Grey, Biostratigraphic studies of stromatolites from the Proterozoic Earaheedy Group, Nabberu Basin, Western Australia. West. Aust. Geol. Surv. Bull. 130, 123 (1984)

    Google Scholar 

  • K. Grey, Stromatolites and other organic remains in the Bangemall Basin. Appendix in Muhling, P.C. and Brakel, A.T., Geology of the Bangemall Group: the evolution of an intracratonic basin. West. Aust. Geol. Surv. Bull. 128, 221–256 (1985)

    Google Scholar 

  • K. Grey, Book Review—“Proceedings of the Indo-Soviet Symposium on Stromatolites and Stromatolitic Deposits” by K.S. Valdiya (editor). Precambr. Res. 59(3/4), 325–327 (1992)

    Article  ADS  Google Scholar 

  • K. Grey, Stromatolites from the Palaeoproterozoic Earaheedy Group, Earaheedy Basin, Western Australia. Alcheringa 18, 187–218 (1994)

    Article  Google Scholar 

  • J.P. Grotzinger, Facies and evolution of Precambrian carbonate depositional systems: Emergence of modern platform archetype. SEPM Spec. Publ. 44, 79–106 (1989)

    Google Scholar 

  • J.P. Grotzinger, Geochemical model for Proterozoic stromatolite decline. Am. J. Sci. A 290, 80–103 (1990)

    Google Scholar 

  • J.P. Grotzinger, D.H. Rothman, An abiotic model for stromatolite morphogenesis. Nature 383, 423–425 (1996)

    Article  ADS  Google Scholar 

  • G. Gürich, Les spongiostromides di Viséen de la province de Namur. Muséum d’Historie Naturelle de Belgique, mémoires 3/4, 1–55 (1906)

    Google Scholar 

  • I.W. Hälbich, D. Lamprecht, W. Altermann, U.E. Horstmann, The carbonate-banded iron formation transition in the Early Proterozoic of South Africa. J. Afr. Earth Sci. 15(2), 217–236 (1992)

    Article  Google Scholar 

  • J.D. Hall, Cryptozoön (proliferum) n.g. and s.p.- Rep. N.Y. State Mus. 36, pl. 6, 1883

  • H.J. Hofmann, Attributes of stromatolites. Geological Survey Canada, Paper 69/39 (1969), 58pp

  • H.J. Hofmann, Stromatolites: Characteristics and utility. Earth Sci. Rev. 9, 339–373 (1973)

    Article  ADS  Google Scholar 

  • H.J. Hofmann, On Aphebian stromatolites and Riphean stromatolite stratigraphy. Precambr. Res. 5, 175–205 (1977)

    Article  Google Scholar 

  • H.J. Hofmann, Archean stromatolites as microbial archives, in Microbial Sediments, ed. by R.E. Riding, S.M. Awramik (Springer, Berlin, 2000), pp. 315–327

    Google Scholar 

  • H.J. Hofmann, K. Grey, A. Hickman, R. Thorpe, Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 111, 1256–1262 (1999)

    Article  Google Scholar 

  • P.F. Hoffman, Shallow and deepwater stromatolites in lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada. Bull. Am. Assoc. Petroleum Geol. 58(5), 856–867 (1974)

    Google Scholar 

  • P. Hoffman, Environmental diversity of Middle Precambrian stromatolites, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976), pp. 599–612

    Google Scholar 

  • R. Höferle, D. Haller, A. Tetzlaff, W. Altermann, The unique assemblage of elongated, coniform stromatolites in the Neoarchean Campbellrand Subgroup, southwestern Kaapvaal Craton, South Africa. Abstracts, 18th Colloq. of Afr. Geol., Graz. J. Afr. Earth Sci. 30(4), 40 (2000)

    Google Scholar 

  • R.J. Horodyski, Environmental influences on columnar stromatolite branching patterns: examples from the Middle Proterozoic Belt Supergroup, Glacier National Park, Montana. J. Paleontol. 51, 661–671 (1977)

    Google Scholar 

  • E. Kalkowsky, Oolith and Stromatolith im Norddeutschen Bundsandstein. Z. dt. geol. Ges. 60, 68–125 (1908)

    Google Scholar 

  • J. Kazmierczak, W. Altermann, Neoarchean biomineralisation by benthic cyanobacteria. Science 298, 2351 (2002)

    Article  Google Scholar 

  • J. Kazmierczak, S. Kempe, W. Altermann, Microbial origin of Precambrian carbonates: Lessons from modern analogues, in The Precambrian Earth: Tempos and Events, ed. by P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, O. Catuneanu. Developments in Precambrian Geology (Elsevier, Amsterdam, 2004), pp. 545–563

    Google Scholar 

  • S. Kiyokawa, T. Ito, M. Ikehara, F. Kitajima, Middle Archean volcano-hydrothermal sequence: Bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. GSA Bull. 118(1–2), 3–22 (2006)

    Google Scholar 

  • W.E. Krumbein, Stromatolites – the challenge of a term in space and time. Precambr. Res. 20, 493–531 (1983)

    Article  Google Scholar 

  • M.B. Lambert, Stromatolites of the late Archean back River stratovolcano, Slave structural province, Northwest Territories, Canada. Can. J. Earth Sci. 35(3), 290–301 (1998)

    Article  ADS  Google Scholar 

  • B.W. Logan, Cryptozoon and associated stromatolites from the Recent, Shark Bay, Western Australia. J. Geol. 69, 517–533 (1961)

    Article  ADS  Google Scholar 

  • B.W. Logan, R. Rezak, R.N. Ginsburg, Classification and environmental significance of algal stromatolites. J. Geol. 72, 68–83 (1964)

    ADS  Google Scholar 

  • D.R. Lowe, Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambr. Res. 19, 239–283 (1983)

    Article  ADS  Google Scholar 

  • D.R. Lowe, M.M. Tice, Tectonic controls on atmospheric, climatic, and biological evolution 3.5–3.4 Ga. Precambr. Res. 158, 177–197 (2007)

    Article  Google Scholar 

  • T.R. Mason, V. von Brunn, 3-Gyr-old stromatolites from South Africa. Nature 266, 47–49 (1977)

    Article  ADS  Google Scholar 

  • D. Mawson, Some South Australian algal limestones in process of formation. Quart. J. Geol. Soc. 85, 613–623 (1929)

    Article  Google Scholar 

  • A.D. Miall, Principles of Sedimentary Basin Analysis (Springer, New York, 1984), 490pp

    Google Scholar 

  • S. Moorbath, Dating earliest life. Nature 434, 155 (2005)

    Article  ADS  Google Scholar 

  • D.R. Nelson, A.F. Trendall, W. Altermann, Chronological correlations between the Pilbara and Kaapvaal cratons. Precambr. Res. 97(3–4), 165–189 (1999)

    Article  Google Scholar 

  • N. Noffke, N. Beukes, J. Gutzmer, R. Hazen, Spatial and temporal distribution of microbially induced sedimentary structures: A case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa. Precambr. Res. 146, 35–44 (2006a)

    Article  Google Scholar 

  • N. Noffke, R.N. Hazen, K.A. Eriksson, E.L. Simpson, A new window into early life: Microbial mats in siliciclastic early Archean tidal flat (3.2 Ga Moodies Group, South Africa). Geology 34, 253–256 (2006b)

    Article  ADS  Google Scholar 

  • P.E. Playford, Devonian “Great Barrier Reef” of the Canning Basin, Western Australia. AAPG Bull. 64, 814–840 (1980)

    Google Scholar 

  • B.R. Pratt, Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology 29, 763–766 (2001)

    Article  ADS  Google Scholar 

  • B.R. Pratt, Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud—Discussion and reply. Geology 30, 580 (2002)

    Article  ADS  Google Scholar 

  • W.V. Preiss, The systematics of South Australian Precambrian and Cambrian Stromatolites, Part I. South Aust. R. Soc. Trans. 96, 67–100 (1972)

    Google Scholar 

  • W.V. Preiss, The Systematics of South Australian Precambrian and Cambrian Stromatolites, Part II. South Aust. R. Soc. Trans. 97(2), 91–125 (1973)

    Google Scholar 

  • W.V. Preiss, The systematics of South Australian Precambrian and Cambrian stromatolites, Part III. South Aust. R. Soc. Trans. 98, 105–208 (1974)

    Google Scholar 

  • M.E. Raaben, A.K. Sinha, Classification of stromatolites: in K.S. Valdiya (ed.) Proceedings of the Indo-Soviet Symposium on Stromatolites and Stromatolitic Deposits. Himal. Geol. 13, 215–227 (1989)

    Google Scholar 

  • M.E. Raaben, A.K. Sinha, M. Sharma, Precambrian Stromatolites of India and Russia (a catalogue of Type-Form-Genera) (Birbal Sahni Institute of Palaeobotany, Army Printing Press, 2001), 125pp

  • R. Riding, The term stromatolite: towards an essential definition. Lethaia 32, 321–330 (1999)

    Article  Google Scholar 

  • R.E. Riding, S.M. Awramik (eds.), Microbial Sediments (Springer, Berlin, 2000), 331pp

    Google Scholar 

  • J. Schieber, P. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann, O. Catuneanu (eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. Atlases in Geosciences, vol. 2 (Elsevier, Amsterdam, 2007), 311p

    Google Scholar 

  • J.W. Schopf (ed.), Earth’s Earliest Biosphere: Its Origin and Evolution (Princeton University Press, Princeton, 1983), 543pp

    Google Scholar 

  • J.W. Schopf, Earth’s earliest biosphere: Status of the hunt, in The Precambrian Earth: Tempos and Events, ed. by P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, O. Catuneanu. Developments in Precambrian Geology (Elsevier, Amsterdam, 2004), pp. 516–539

    Google Scholar 

  • J.W. Schopf, Microfossils of the early Archean Apex chert: New evidence of the antiquity of life. Science 260, 640–646 (1993)

    Article  ADS  Google Scholar 

  • J.W. Schopf, Fossil evidence of Archaean life. Philos. Trans. R. Soc. Lond. B 361, 869–885 (2006)

    Article  Google Scholar 

  • J.W. Schopf, C. Klein (eds.), The Proterozoic Biosphere: A Multidisciplinary Study (Cambridge University Press, Cambridge, 1992), 1348pp

    Google Scholar 

  • J.W. Schopf, A.B. Kudryavtsev, A.D. Czaja, A.B. Tripathi, Evidence of Archean life: Stromatolites and microfossils. Precambr. Res. 158, 141–155 (2007a)

    Article  Google Scholar 

  • J.W. Schopf, M.R. Walter, C. Ruiji, Earliest evidence of life on Earth. Precambr. Res. 158, 139–140 (2007b)

    Article  Google Scholar 

  • J.W. Schopf, Yu.K. Sovietov, Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian Biostratigraphy. Science 193, 143–146 (1976)

    Article  ADS  Google Scholar 

  • S.N. Serebryakov, M.A. Semikhatov, Riphean and Recent stromatolites: a comparison. Am. J. Sci. 274(6), 556–574 (1974)

    Article  Google Scholar 

  • B.M. Simonson, K.E. Carney, Roll-Up Structures: Evidence of in situ Microbial Mats in Late Archean Deep Shelf Environments. Palaios 14, 13–24 (1999)

    Article  Google Scholar 

  • D.Y. Sumner, Decimetre-thick encrustations of calcite and aragonite on the sea-floor and implications for Neoarchean and Neoproterozoic ocean chemistry, in Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems, ed. by W. Altermann, P.L. Corcoran. I.A.S. Spec. Publ., vol. 33 (Blackwell, Oxford, 2002), pp. 107–122

    Google Scholar 

  • K. Sugitani, K. Grey, A. Allwood, T. Nagaoka, K. Mimura, M. Minami, C.P. Marshall, M.J. Van Kranendonk, M.R. Walter, Diverse microstructures from Archean chert from the Mount Goldsworthy – Mount Grant area, Pilbara Craton, Western Australia: Microfossils, dubiofossils, or pseudofossils? Precambr. Res. 158, 228–262 (2007)

    Article  Google Scholar 

  • M.M. Tice, D.R. Lowe, The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert. Earth Sci. Rev. 76, 259–300 (2006)

    Article  ADS  Google Scholar 

  • J.F. Truswell, K.A. Eriksson, Stromatolitic associations and their palaeo-environmental significance: A re-appraisal of a lower Proterozoic locality from the northern Cape Province, South Africa. Sediment. Geol. 10, 1–23 (1973)

    Article  ADS  Google Scholar 

  • Y. Ueno, Y. Isozaki, H. Yurimoto, S. Maruyama, Carbon isotopic signatures of individual Archean microfossils(?) from Western Australia. Int. Geol. Rev. 40, 196–212 (2001)

    Article  Google Scholar 

  • Y. Ueno, Y. Isozaki, K.J. McNamara, Coccoid-like microstructures in a 3.0 Ga Chert from Western Australia. Int. Geol. Rev. 48, 78–88 (2006a)

    Article  Google Scholar 

  • Y. Ueno, K. Yamada, N. Yoshida, S. Maruyama, Y. Isozaki, Evidence from fluid inclusions for microbial methanogenesis in the early Archean era. Nature 440(23), 516–519 (2006b)

    Article  ADS  Google Scholar 

  • M.J. Van Kranendonk, Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci. Rev. 74, 197–240 (2006)

    Article  ADS  Google Scholar 

  • M.J. Van Kranendonk, A.H. Hickman, I.R. Williams, W. Nijman, Archaean geology of the East Pilbara Granite-Greenstone Terrane Western Australia—a field guide. Geological Survey of Western Australia, Record 2001/9, Perth, 2001, 134pp

  • M.A. Van Zuilen, M. Chaussidon, C. Rollion-Bard, B. Marty, Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures. Geochim. Cosmochim. Acta 71(3), 655–669 (2007)

    Article  ADS  Google Scholar 

  • M.M. Walsh, Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambr. Res. 54, 271–293 (1992)

    Article  ADS  Google Scholar 

  • M.R. Walter, Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Paleont. Assoc. Lond. Spec. Pap. 11, 190 (1972)

    Google Scholar 

  • M.R. Walter, Introduction, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976a), pp. 1–3

    Google Scholar 

  • M.R. Walter (ed.), Stromatolites. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976b), 790pp

    Google Scholar 

  • M.R. Walter, J.P. Grotzinger, J.W. Schopf, Proterozoic stromatolites, in The Proterozoic Biosphere, ed. by J.W. Schopf, C. Klein (Cambridge University Press, New York, 1992), pp. 253–260

    Google Scholar 

  • M.R. Walter, J. Bauld, T.D. Brock, Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976), pp. 273–310

    Google Scholar 

  • D.T. Wright, W. Altermann, Microfacies development in Late Archaean stromatolites and oolites of the Campbellrand Subgroup, South Africa, in Carbonate Platform Systems. Components and interactions, ed. by E. Insalco, P.W. Skelton, T.J. Palmer. Geol. Soc. London, Spec. Publ., vol. 178 (2000), pp. 51–70

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladyslaw Altermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altermann, W. Accretion, Trapping and Binding of Sediment in Archean Stromatolites—Morphological Expression of the Antiquity of Life. Space Sci Rev 135, 55–79 (2008). https://doi.org/10.1007/s11214-007-9292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9292-1

Keywords

Navigation