Skip to main content
Log in

Planetary Magnetic Fields and Solar Forcing: Implications for Atmospheric Evolution

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data.

Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth?

Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive.

The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:

  1. 1.

    Solar forcing is effective in removing volatiles, primarily water, from planets,

  2. 2.

    planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and

  3. 3.

    a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.H. Acuña et al., Science 279, 1676 (1998)

    Article  ADS  Google Scholar 

  • H. Alfvén, Cosmical Electrodynamics (Oxford University Press, Oxford, 1950)

    MATH  Google Scholar 

  • T.R. Ayres, J. Geophys. Res. 102, 1641–1651 (1997)

    Article  ADS  Google Scholar 

  • V.R. Baker, Nature 412, 228–236 (2001)

    Article  ADS  Google Scholar 

  • S.J. Bauer, H. Lammer, Planetary Aeronomy: Atmosphere Environments in Planetary Atmospheres (Springer, Berlin, 2004)

    Google Scholar 

  • S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Science (2007)

  • J.-P. Bibring, Y. Langevin, F. Poulet, A. Gendrin, B. Gondet, M. Berthé, A. Souflot, P. Drossart, M. Combes, G. Bellucci, V. Moroz, N. Mangold, B. Schmidt, OMEGA team, Nature 428(6983), 627–630 (2004)

    Article  ADS  Google Scholar 

  • M.K. Bird, P. Edenhofer, in Physics of the Inner Heliosphere I, ed. by R. Schwenn, E. Marsch, vol. XI (Springer, Berlin, 1990), pp. 13–97

    Google Scholar 

  • A. Bressan, F. Fagotto, G. Bertelli, C. Chiosi, Astron. Astrophys. Suppl. Ser. 100, 647–664 (1993)

    ADS  Google Scholar 

  • L.H. Brace, W.T. Kasprzak, H.A. Taylor, R.F. Theis, C.T. Russell, A. Barnes, J.D. Mihalov, D.M. Hunten, J. Geophys. Res. 92, 15 (1987)

    ADS  Google Scholar 

  • E. Carlsson et al., Icarus 182(2), 320 (2006)

    Article  ADS  Google Scholar 

  • M.H. Carr, J.W. Head, J. Geophys. Res. 108, 5042 (2003). doi:10.1029/2002JE001963

    Article  Google Scholar 

  • C.R. Chappell, T.E. Moore, J.H. Waite Jr, J. Geophys. Res. 92, 5896 (1987)

    ADS  Google Scholar 

  • E. Chassefière, Icarus 124, 537–552 (1996)

    Article  ADS  Google Scholar 

  • E. Chassefière, F. Leblanc, Planet. Space Sci. 52, 1039–1058 (2004)

    Article  ADS  Google Scholar 

  • E. Chassefière, F. Leblanc, B. Langlais, Planet. Space Sci. (2007). doi:10.1016/j.pss.2006.02.003

  • C.C. Chaston, L.M. Peticolas, C.W. Carlson, and 16 coauthors, J. Geophys. Res. 110, A02211 (2005). doi:10.1029/2004JA010483

    Article  Google Scholar 

  • D.H. Crider, D.A. Brain, M.H. Acuña, D. Vignes, C. Mazelle, C. Bertucci, Space Sci. Rev. 111, 203–221 (2004)

    Article  ADS  Google Scholar 

  • T.M. Donahue, R.E. Hartle, Geophys. Res. Lett. 19, 2449–2452 (1992)

    ADS  Google Scholar 

  • J.D. Dorren, E.F. Guinan, in The Sun as a Variable Star, ed. by J.M. Pap, C. Frolich, H.S. Hudson, S. Solanki (Cambridge Univ. Press, Cambridge, 1994), p. 206

    Google Scholar 

  • E. Dubinin, R. Lundin, H. Koskinen, N. Pissarenko, J. Geophys. Res. 98, 3991 (1993)

    ADS  Google Scholar 

  • E. Dubinin, D. Winningham, M. Fränz, the ASSPERA-3 team, Icarus 182(2), 343 (2006)

    Article  ADS  Google Scholar 

  • J.W. Dungey, Phys. Rev. Lett. 6, 47–48 (1961)

    Article  ADS  Google Scholar 

  • J.R. Espley, P.A. Cloutier, D.H. Crider, D.A. Brain, M.H. Acuña, J. Geophys. Res. (2004). 2004AGUFMSA13A1120E

  • P. Foukal, C. Fröhlich, H. Spruit, T.M.L. Wigley, Nature 443, 161–166 (2006). doi:10.1038

    Article  ADS  Google Scholar 

  • J.L. Fox, A. Hac, J. Geophys. Res. 102, 24005–24011 (1997)

    Article  ADS  Google Scholar 

  • R.A. Frahm, J.R. Sharber, J.D. Winningham, the ASSPERA-3 team, Space Sci. Rev. 126, 389–402 (2006)

    Article  ADS  Google Scholar 

  • E. Friis-Christensen, K. Lassen, Science 254, 698 (1991)

    Article  ADS  Google Scholar 

  • B.F. Gordiets, Yu.N. Kulikov, M.N. Markov, M.Ya. Marov, J. Geophys. Res. 87, 4504–4514 (1982)

    ADS  Google Scholar 

  • J.-M. Griemeier, A. Stadelmann, T. Penz, H. Lammer, F. Selsis, I. Ribas, E.F. Guinan, U. Motschmann, H.-K. Biernat, W.W. Weiss, Astron. Astrophys. 425, 753–762 (2004)

    Article  ADS  Google Scholar 

  • E.F. Guinan, I. Ribas, in The Evolving Sun and its Influence on Planetary Environments, ed. by B. Montesinos, A. Giménez, E.F. Guinan. ASP, vol. 269 (San Francisco, 2002), pp. 85–107

  • J.A. Guzik, L.S. Watson, A.N. Cox, Memorie della Societa Astronomica Italiana 77, 389 (2006)

    ADS  Google Scholar 

  • M. Güdel, E.F. Guinan, S.L. Skinner, Astrophys. J. 483, 947–960 (1997)

    Article  ADS  Google Scholar 

  • E.M. Harnett, R.M. Winglee, J. Geophys. Res. 110 (2005). doi:10.1029/2003JA010315

  • W.B. Hanson, S. Sanatani, D.R. Zuccaro, J. Geophys. Res. 82, 4351–4363 (1977)

    ADS  Google Scholar 

  • R.E. Hartle, H.A. Taylor, S.J. Bauer, L.H. Brace, C.T. Russell, R.E. Daniell, J. Geophys. Res. 85, 7739–7746 (1980)

    ADS  Google Scholar 

  • R.E. Hartle, J.M. Grebowsky, J. Geophys. Res. 98, 7437–7445 (1993)

    ADS  Google Scholar 

  • D.V. Hoyt, K.H. Schatten, The Role of the Sun in Climate Change (Oxford University Press, Oxford, 1997)

    Google Scholar 

  • D.E. Hunten, Science 259, 915–920 (1993)

    ADS  Google Scholar 

  • B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Icarus 111, 271 (1994)

    Article  ADS  Google Scholar 

  • R.E. Johnson, D. Schnellenberger, M.C. Wong, J. Geophys. Res. 105, 1659–1670 (2000)

    Article  ADS  Google Scholar 

  • E. Kallio, J.G. Luhmann, J.G. Lyon, J. Geophys. Res. 103, 4753–4754 (1998)

    Article  ADS  Google Scholar 

  • E. Kallio, P. Janhunen, J. Geophys. Res. 107(A3) (2002). doi:10.1029/2001JA000090

  • E. Kallio, A. Fedorovm, E. Budnik, the ASPERA-3 team, Icarus 182(2), 448 (2006)

    Article  ADS  Google Scholar 

  • J. Kanipe, Nature 443, 141–143 (2006)

    Article  ADS  Google Scholar 

  • J.F. Kasting, Icarus 74, 472–494 (1988)

    Article  ADS  Google Scholar 

  • J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Icarus 101, 108–128 (1993)

    Article  ADS  Google Scholar 

  • R. Keppens, K.B. MacGregor, P. Charbonneau, Astron. Astrophys. 294, 469–487 (1995)

    ADS  Google Scholar 

  • J. Keyser, M.W. Dunlop, C.J. Owen, B.U.Ö. Sonnerup, S.E. Haaland, A. Vaivads, G. Paschmann, R. Lundin, L. Rezeau, Space Sci. Rev. 118, 231–320 (2005)

    Article  ADS  Google Scholar 

  • J. Kim, A.F. Nagy, J.L. Fox, T. Craven, J. Geophys. Res. 103(29), 29,339–29,342 (1998)

    ADS  Google Scholar 

  • A.M. Krymskii, T.K. Breus, N.F. Ness, M.H. Acuña, J.E.P. Connerney, D.H. Crider, D.L. Mitchell, S.J. Bauer, J. Geophys. Res. 107(A9), 1245 (2002). doi:10.1029/2001JA000239

    Article  Google Scholar 

  • Yu.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, N. Terada, I. Ribas, C. Kolb, D. Langmayr, R. Lundin, E.F. Guinan, S. Barabash, H.K. Biernat, Planet. Space Sci. 54, 1425–1444 (2006)

    Article  ADS  Google Scholar 

  • Yu.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Penz, D. Breuer, T. Spohn, R. Lundin, H.K. Biernat, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9192-4

  • H. Lammer, W. Stumptner, S.J. Bauer, Geophys. Res. Lett. 23, 3353–3356 (1996)

    Article  ADS  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Icarus 106, 9–25 (2003)

    Article  ADS  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmstrom, S. Barabash, T.L. Zhang, W. Baumjohann, Planet. Space Sci. (2006, in press)

  • J. Lean, Ann. Rev. Astron. Astrophys. 35, 33–67 (1997)

    Article  ADS  Google Scholar 

  • F. Leblanc, R.E. Johnson, J. Geophys. Res. (2002). doi:10.1029/2000JE001473

  • J.S. Lewis, R.G. Prinn, Planets and Their Atmospheres: Origin and Evolution (Academic, Orlando, 1984)

    Google Scholar 

  • J.G. Luhmann, J.U. Kozyra, J. Geophys. Res. 96, 5457 (1991)

    ADS  Google Scholar 

  • J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Geophys. Res. Lett. 19, 2151 (1992)

    ADS  Google Scholar 

  • J.G. Luhmann, S.J. Bauer, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions. AGU Monograph, vol. 66 (1992), pp. 417–430

  • J.G. Luhmann, S.A. Ledvina, J.G. Lyon, C.T. Russell, Planet. Space Sci. 54, 1457–1471 (2006)

    Article  ADS  Google Scholar 

  • R. Lundin, A. Zakharov, R. Pellinen, B. Hultqvist, H. Borg, E.M. Dubinin, S. Barabasj, N. Pissarenko, H. Koskinen, I. Liede, Nature 341, 609 (1989)

    Article  ADS  Google Scholar 

  • R. Lundin, E.M. Dubinin, S.V. Barabash, H. Koskinen, O. Norberg, N. Pissarenko, A.V. Zakharov, Geophys. Res. Lett. 18, 1059 (1991)

    ADS  Google Scholar 

  • R. Lundin, E.M. Dubinin, Adv. Space Res. 12(9), 255 (1992)

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, Planet. Space Sci. 52, 1059–1071 (2004a)

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, H. Andersson, M. Holmström, the ASPERA3 team, Science 305, 1933 (2004b)

    Article  ADS  Google Scholar 

  • R. Lundin, D. Winningham, S. Barabash, R. Frahm, the ASPERA-3 team, Icarus 182(2), 308 (2006a)

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, the ASPERA 3 team (2006b, manuscript under preparation)

  • R. Lundin, D. Winningham, S. Barabash, the ASPERA 3 team, Science 311, 980–983 (2006c)

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, J.-A. Sauvaud, the ASPERA-4 team, Science (2007, submitted)

  • J.I. Lunine, J. Chambers, A. Morbidelli, L.A. Leshin, Icarus 165, 1–8 (2003)

    Article  ADS  Google Scholar 

  • H. Lundstedt, L. Liszka, R. Lundin, R. Muschler, Annales Geophysicae 24, 1–10 (2006)

    Article  Google Scholar 

  • M.B. McElroy, T.Y. Kong, Y.L. Yung, J. Geophys. Res. 82, 4379–4388 (1977)

    ADS  Google Scholar 

  • Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, J. Geophys. Res. 109, A07211 (2004). doi:10.1029/2003JA010367

    Article  Google Scholar 

  • C.P. McKay, C.R. Stoker, Rev. Geophys. 27, 189–214 (1989)

    ADS  Google Scholar 

  • R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Ann. Geophys. 23, 433–444 (2005)

    Article  ADS  Google Scholar 

  • T.E. Moore, R. Lundin, D. Alcayde, M. Andre, S.B. Ganguli, M. Temerin, A. Yau, Space Sci. Rev. 88 (1999)

  • A.F. Nagy, T.E. Cravens, S.G. Smith, H.A. Taylor, H.C. Brinton, J. Geophys. Res. 85, 7795–7801 (1980)

    ADS  Google Scholar 

  • A.F. Nagy, D. Winterhalter, K. Sauer et al., Space Sci. Rev. 111(1), 33–114 (2004)

    Article  ADS  Google Scholar 

  • G. Neukum, New view of Mars after two years of Mars Express high resolution stereo camera data acquisition and analysis. American Geophysical Union, Fall Meeting 2005, abstract #P13C-03

  • G. Newkirk Jr., Geochimica Cosmochimica Acta Suppl. 13, 293–301 (1980)

    Google Scholar 

  • M.J. Newman, R.T. Rood, Science 198, 1035–1037 (1977)

    Article  ADS  Google Scholar 

  • O. Norberg, R. Lundin, S. Barabash, in COSPAR Colloquium 4, Plasma Environments of Non-magnetic Planets, ed. by T.I. Gombosi (1993), pp. 299–304

  • T. Owen, in Evolution of Planetary Atmospheres and Climatology of the Earth. International Conference, Nice, France, A79-33839 13-42, Toulouse, CNRS, 1979, pp. 1–10

  • E.N. Parker, Astrophys. J. 128, 664 (1958)

    Article  ADS  Google Scholar 

  • M.R. Patel, A. Berc¶es, C. Kolb, H. Lammer, P. Rettberg, J.C. Zarnecki, F. Selsis, Int. J. Astrobiol. 2, 21–34 (2003)

    Article  Google Scholar 

  • R.O. Pepin, Icarus 111, 289–304 (1994)

    Article  ADS  Google Scholar 

  • H. Pérez-de Tejada, J. Geophys. Res. 92, 4713 (1987)

    ADS  Google Scholar 

  • H. Pérez-de Tejada, J. Geophys. Res. 103, 31499–31508 (1998)

    Article  ADS  Google Scholar 

  • I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Astrophys. J. 622, 680–694 (2005)

    Article  ADS  Google Scholar 

  • C.T. Russell, J.G. Luhmann, R.J. Strangeway, Planet. Space Sci. 54, 1482–1495 (2006)

    Article  ADS  Google Scholar 

  • I.-J. Sackmann, A.I. Boothroyd, Astrophys. J. 583, 1024–1039 (2003)

    Article  ADS  Google Scholar 

  • C. Sagan, G. Mullen, Science 177, 52–56 (1972)

    Article  ADS  Google Scholar 

  • K. Seki, R.C. Elphic, M. Hirahara, T. Terasawa, T. Mukai, Science 291, 1939–1941 (2001)

    Article  ADS  Google Scholar 

  • G. Schubert, C.T. Russell, W.B. Moore, Nature 408, 666 (2000)

    Article  ADS  Google Scholar 

  • R. Schwenn, in Large-Scale Structure of the Interplanetary Medium, Physics of the Inner Heliosphere I, vol. XI, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), p. 99

    Google Scholar 

  • T. Simon, E.F. Boesgaard, G. Herbig, Astrophys. J. 293, 551–570 (1985)

    Article  ADS  Google Scholar 

  • A. Skumanich, Astrophys. J. 171, 565–567 (1972)

    Article  ADS  Google Scholar 

  • H. Svensmark, E. Friis-Christensen, J. Atmosph. Sol.-Terr. Phys. 59, 1225–1232 (1997)

    Article  ADS  Google Scholar 

  • H. Svensmark, Space Sci. Rev. 93, 175–185 (2000)

    Article  ADS  Google Scholar 

  • H. Svensmark, J.O.P. Pedersen, N. Marsh, M. Enghoff, U. Uggerhøj, Proceedings of the Royal Society A, October 3rd, 2006

  • N. Terada, S. Machida, H. Shinagawa, J. Geophys. Res. 107, 1471–1490 (2002)

    Article  Google Scholar 

  • D. Vignes, C. Mazelle, H. Rème, M.H. Acuña, J.E.P. Connerney, R.P. Lin, D.L. Mitchell, P. Cloutier, D.H. Crider, N.F. Ness, Geophys. Res. Lett. 27(1), 49 (2000)

    Article  ADS  Google Scholar 

  • D.F. Webb, R.A. Howard, J. Geophys. Res. 99, 4201–4220 (1994)

    Article  ADS  Google Scholar 

  • D.P. Whitmire, L.R. Doyle, R.T. Reynolds, J. Matese, J. Geophys. Res. 100, 5457–5464 (1995)

    Article  ADS  Google Scholar 

  • J.D. Winningham, R.A. Frahm, J.R. Sharber, the ASPERA-3 team Icarus 182(2), 360 (2006)

    Article  ADS  Google Scholar 

  • B.E. Wood, H.-R. Müller, G. Zank, J.L. Linsky, Astrophys. J. 574, 412–425 (2002)

    Article  ADS  Google Scholar 

  • B.E. Wood, H.-R. Müller, G.P. Zank, J.L. Linsky, S. Redfield, Astrophys. J. 628, L143–L146 (2005)

    Article  ADS  Google Scholar 

  • A.W. Yau, B.A. Whalen, Geophys. Res. Lett. 18, 345–348 (1991)

    ADS  Google Scholar 

  • A.W. Yau, B.A. Whalen, C. Goodenaough, E. Sagawa, T. Mukai, J. Geophys. Res. 98, 11205–11224 (1993)

    ADS  Google Scholar 

  • A.W. Yau, M. André, Space Sci. Rev. 37, 1 (1997)

    Article  ADS  Google Scholar 

  • K.J. Zahnle, J.C.G. Walker, Rev. Geophys. 20, 280–292 (1982)

    ADS  Google Scholar 

  • T.L. Zhang, J.G. Luhmann, C.T. Russell, J. Geophys. Res. 96, 11145 (1991)

    ADS  Google Scholar 

  • M.H. Zhang, J. Luhmann, A.F. Nagy et al., J. Geophys. Res. 98, 3311 (1993)

    Article  ADS  Google Scholar 

  • M.T. Zuber, D.E. Smith, S.C. Solomon, J.B. Abshire, R.S. Afzal et al., Science 282, 2053–2060 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rickard Lundin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundin, R., Lammer, H. & Ribas, I. Planetary Magnetic Fields and Solar Forcing: Implications for Atmospheric Evolution. Space Sci Rev 129, 245–278 (2007). https://doi.org/10.1007/s11214-007-9176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9176-4

Keywords

Navigation