Skip to main content

Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions

  • Chapter
  • First Online:
The Magnetodiscs and Aurorae of Giant Planets

Abstract

The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. Achilleos, S. Miller, R. Prangé, G. Millward, M.K. Dougherty, A dynamical model of Jupiter’s auroral electrojet. New J. Phys. 3, 3 (2001). doi:10.1088/1367-2630/3/1/303

    ADS  Google Scholar 

  • N. Achilleos, P. Guio, C.S. Arridge, A model of force balance in Saturn’s magnetodisc. Mon. Not. R. Astron. Soc. 401, 2349–2371 (2010). doi:10.1111/j.1365-2966.2009.15865.x

    Article  ADS  Google Scholar 

  • N. André, K.M. Ferrière, Low-frequency waves and instabilities in stratified, gyrotropic, multicomponent plasmas: Theory and application to plasma transport in the Io torus. J. Geophys. Res. 109, 12225 (2004). doi:10.1029/2004JA010599

    Article  Google Scholar 

  • N. André, K.M. Ferrière, Comments on Vasyliunas’ and Pontius’ studies of the effects of the planetary ionosphere and of the Coriolis force on the interchange instability. J. Geophys. Res. 112, 10203 (2007). doi:10.1029/2006JA011732

    Article  Google Scholar 

  • N. André, M.K. Dougherty, C.T. Russell, J.S. Leisner, K.K. Khurana, Dynamics of the Saturnian inner magnetosphere: First inferences from the Cassini magnetometers about small-scale plasma transport in the magnetosphere. Geophys. Res. Lett. 32, 14 (2005). doi:10.1029/2005GL022643

    Article  Google Scholar 

  • N. André, A.M. Persoon, J. Goldstein, J.L. Burch, P. Louarn, G.R. Lewis, A.M. Rymer, A.J. Coates, W.S. Kurth, E.C. Sittler, M.F. Thomsen, F.J. Crary, M.K. Dougherty, D.A. Gurnett, D.T. Young, Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere. Geophys. Res. Lett. 34, 14108 (2007). doi:10.1029/2007GL030374

    Article  ADS  Google Scholar 

  • D.J. Andrews, S.W.H. Cowley, M.K. Dougherty, L. Lamy, G. Provan, D.J. Southwood, Planetary period oscillations in Saturn’s magnetosphere: Evolution of magnetic oscillation properties from southern summer to post-equinox. J. Geophys. Res. 117, 4224 (2012). doi:10.1029/2011JA017444

    Article  Google Scholar 

  • C.S. Arridge, N. André, K.K. Khurana, C.T. Russell, S.W.H. Cowley, G. Provan, D.J. Andrews, C.M. Jackman, A.J. Coates, E.C. Sittler, M.K. Dougherty, D.T. Young, Periodic motion of Saturn’s nightside plasma sheet. J. Geophys. Res. 116, 11205 (2011). doi:10.1029/2011JA016827

    Article  Google Scholar 

  • F. Bagenal, Ionization source near Io from Galileo wake data. Geophys. Res. Lett. 24, 2111 (1997). doi:10.1029/97GL02052

    Article  ADS  Google Scholar 

  • F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, 5209 (2011). doi:10.1029/2010JA016294

    Article  Google Scholar 

  • D.D. Barbosa, Theory and observations of electromagnetic ion cyclotron waves in Saturn’s inner magnetosphere. J. Geophys. Res. 98, 9345–9350 (1993). doi:10.1029/93JA00476

    Article  ADS  Google Scholar 

  • M. Blanc, S. Bolton, J. Bradley, M. Burton, T.E. Cravens, I. Dandouras, M.K. Dougherty, M.C. Festou, J. Feynman, R.E. Johnson, T.G. Gombosi, W.S. Kurth, P.C. Liewer, B.H. Mauk, S. Maurice, D. Mitchell, F.M. Neubauer, J.D. Richardson, D.E. Shemansky, E.C. Sittler, B.T. Tsurutani, P. Zarka, L.W. Esposito, E. Grün, D.A. Gurnett, A.J. Kliore, S.M. Krimigis, D. Southwood, J.H. Waite, D.T. Young, Magnetospheric and plasma science with Cassini-Huygens. Space Sci. Rev. 104, 253–346 (2002). doi:10.1023/A:1023605110711

    ADS  Google Scholar 

  • X. Blanco-Cano, C.T. Russell, R.J. Strangeway, The Io mass-loading disk: Wave dispersion analysis. J. Geophys. Res. 106, 26261–26276 (2001a). doi:10.1029/2001JA900090

    Article  ADS  Google Scholar 

  • X. Blanco-Cano, C.T. Russell, R.J. Strangeway, M.G. Kivelson, K.K. Khurana, Galileo observations of ion cyclotron waves in the Io torus. Adv. Space Res. 28, 1469–1474 (2001b). doi:10.1016/S0273-1177(01)00548-8

    Article  ADS  Google Scholar 

  • X. Blanco-Cano, C.T. Russell, D.E. Huddleston, R.J. Strangeway, Ion cyclotron waves near Io. Planet. Space Sci. 49, 1125–1136 (2001c). doi:10.1016/S0032-0633(01)00020-4

    Article  ADS  Google Scholar 

  • P.C. Brandt, C.P. Paranicas, J.F. Carbary, D.G. Mitchell, B.H. Mauk, S.M. Krimigis, Understanding the global evolution of Saturn’s ring current. Geophys. Res. Lett. 35, 17101 (2008). doi:10.1029/2008GL034969

    Article  ADS  Google Scholar 

  • P.C. Brandt, D.G. Mitchell, D.A. Gurnett, A.M. Persoon, N.A. Tsyganenko, Saturn’s periodic magnetosphere: the relation between periodic hot plasma injections, a rotating partial ring current, global magnetic field distortions, plasmapause motion, and radio emissions, in EGU General Assembly Conference Abstracts, ed. by A. Abbasi, N. Giesen. EGU General Assembly Conference Abstracts, vol. 14 (2012), p. 12906

    Google Scholar 

  • S.H. Brecht, J.G. Luhmann, D.J. Larson, Simulation of the Saturnian magnetospheric interaction with Titan. J. Geophys. Res. 105, 13119–13130 (2000). doi:10.1029/1999JA900490

    Article  ADS  Google Scholar 

  • N. Brice, T.R. McDonough, Jupiter’s radiation belts. Icarus 18, 206–219 (1973). doi:10.1016/0019-1035(73)90204-2

    Article  ADS  Google Scholar 

  • R.A. Brown, The Jupiter hot plasma torus: Observed electron temperature and energy flows. Astrophys. J. 244, 1072 (1981)

    Article  ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 32, 20 (2005). doi:10.1029/2005GL022888

    Article  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, I.I. Alexeev, C.S. Arridge, M.K. Dougherty, J.D. Nichols, C.T. Russell, Cassini observations of the variation of Saturn’s ring current parameters with system size. J. Geophys. Res. 112(A11), 10202 (2007). doi:10.1029/2007JA012275

    Google Scholar 

  • E.J. Bunce, C.S. Arridge, J.T. Clarke, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, J.-C. GéRard, D. Grodent, K.C. Hansen, J.D. Nichols, D.J. Southwood, D.L. Talboys, Origin of Saturn’s aurora: Simultaneous observations by Cassini and the Hubble Space Telescope. J. Geophys. Res. 113, 9209 (2008). doi:10.1029/2008JA013257

    Article  Google Scholar 

  • J.L. Burch, J. Goldstein, T.W. Hill, D.T. Young, F.J. Crary, A.J. Coates, N. André, W.S. Kurth, E.C. Sittler, Properties of local plasma injections in Saturn’s magnetosphere. Geophys. Res. Lett. 32, 14 (2005). doi:10.1029/2005GL022611

    Article  Google Scholar 

  • J.L. Burch, J. Goldstein, W.S. Lewis, D.T. Young, A.J. Coates, M.K. Dougherty, N. André, Tethys and Dione as sources of outward-flowing plasma in Saturn’s magnetosphere. Nature 447, 833–835 (2007). doi:10.1038/nature05906

    Article  ADS  Google Scholar 

  • J.L. Burch, A.D. DeJong, J. Goldstein, D.T. Young, Periodicity in Saturn’s magnetosphere: Plasma cam. Geophys. Res. Lett. 36, 14203 (2009). doi:10.1029/2009GL039043

    Article  ADS  Google Scholar 

  • M.H. Burger, Io’s neutral clouds: From the atmosphere to the plasma torus, PhD thesis, University of Colorado at Boulder, 2003

    Google Scholar 

  • J.F. Carbary, D.G. Mitchell, Periodicities in Saturn’s magnetosphere. Rev. Geophys. 51, 1–30 (2013). doi:10.1002/rog.20006

    Article  ADS  Google Scholar 

  • J.F. Carbary, D.G. Mitchell, S.M. Krimigis, D.C. Hamilton, N. Krupp, Charged particle periodicities in Saturn’s outer magnetosphere. J. Geophys. Res. 112, 6246 (2007). doi:10.1029/2007JA012351

    Google Scholar 

  • J.F. Carbary, D.G. Mitchell, P. Brandt, C. Paranicas, S.M. Krimigis, ENA periodicities at Saturn. Geophys. Res. Lett. 35, 7102 (2008a). doi:10.1029/2008GL033230

    Article  ADS  Google Scholar 

  • J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Track analysis of energetic neutral atom blobs at Saturn. J. Geophys. Res. 113, 1209 (2008b). doi:10.1029/2007JA012708

    Google Scholar 

  • T.A. Cassidy, R.E. Johnson, Collisional spreading of Enceladus’s neutral cloud. Icarus 209, 696–703 (2010). doi:10.1016/j.icarus.2010.04.010

    Article  ADS  Google Scholar 

  • G. Caudal, A self-consistent model of Jupiter’s magnetodisc including the effects of centrifugal force and pressure. J. Geophys. Res. 91, 4201–4221 (1986). doi:10.1029/JA091iA04p04201

    Article  ADS  Google Scholar 

  • C.X. Chen, Numerical simulation of the Io-torus-driven radial plasma transport. J. Geophys. Res. 108, 1376 (2003). doi:10.1029/2002JA009460

    Article  Google Scholar 

  • Y. Chen, T.W. Hill, Statistical analysis of injection/dispersion events in Saturn’s inner magnetosphere. J. Geophys. Res. 113, 7215 (2008). doi:10.1029/2008JA013166

    Google Scholar 

  • Y. Chen, T.W. Hill, A.M. Rymer, R.J. Wilson, Rate of radial transport of plasma in Saturn’s inner magnetosphere. J. Geophys. Res. 115, 10211 (2010). doi:10.1029/2010JA015412

    Article  Google Scholar 

  • A.F. Cheng, Magnetospheric interchange instability. J. Geophys. Res. 90, 9900–9904 (1985). doi:10.1029/JA090iA10p09900

    Article  ADS  Google Scholar 

  • J.T. Clarke, L. Ben Jaffel, J.-C. Gérard, Hubble Space Telescope imaging of Jupiter’s UV aurora during the Galileo orbiter mission. J. Geophys. Res. 103, 20217–20236 (1998). doi:10.1029/98JE01130

    Article  ADS  Google Scholar 

  • K.E. Clarke, D.J. Andrews, C.S. Arridge, A.J. Coates, S.W.H. Cowley, Magnetopause oscillations near the planetary period at Saturn: Occurrence, phase, and amplitude. J. Geophys. Res. 115, 8209 (2010). doi:10.1029/2009JA014745

    Article  Google Scholar 

  • M.R. Combi, K. Kabin, T.I. Gombosi, D.L. DeZeeuw, Io’s plasma environment during the Galileo flyby: Global three-dimensional MHD modeling with adaptive mesh refinement. J. Geophys. Res. 103, 9071 (1998)

    Article  ADS  Google Scholar 

  • M.M. Cowee, S.P. Gary, Electromagnetic ion cyclotron wave generation by planetary pickup ions: One-dimensional hybrid simulations at sub-Alfvénic pickup velocities. J. Geophys. Res. 117, 6215 (2012). doi:10.1029/2012JA017568

    Article  Google Scholar 

  • M.M. Cowee, R.J. Strangeway, C.T. Russell, D. Winske, One-dimensional hybrid simulations of planetary ion pickup: Techniques and verification. J. Geophys. Res. 111, 12213 (2006). doi:10.1029/2006JA011996

    Article  Google Scholar 

  • M.M. Cowee, C.T. Russell, R.J. Strangeway, One-dimensional hybrid simulations of planetary ion pickup: Effects of variable plasma and pickup conditions. J. Geophys. Res. 113, 8220 (2008). doi:10.1029/2008JA013066

    Article  Google Scholar 

  • M.M. Cowee, S.P. Gary, H.Y. Wei, R.L. Tokar, C.T. Russell, An explanation for the lack of ion cyclotron wave generation by pickup ions at Titan: 1-D hybrid simulation results. J. Geophys. Res. 115, 10224 (2010). doi:10.1029/2010JA015769

    Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001). doi:10.1016/S0032-0633(00)00167-7

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, J.D. Nichols, D.J. Andrews, Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model. Ann. Geophys. 25, 1433–1463 (2007). doi:10.5194/angeo-25-1433-2007

    Article  ADS  Google Scholar 

  • F.J. Crary, F. Bagenal, Ion cyclotron waves, pickup ions, and Io’s neutral exosphere. J. Geophys. Res. 105, 25379–27066 (2000). doi:10.1029/2000JA000055

    Article  ADS  Google Scholar 

  • F.J. Crary, F. Bagenal, J.A. Ansher, D.A. Gurnett, W.S. Kurth, Anisotropy and proton density in the Io plasma torus derived from whistler wave dispersion. J. Geophys. Res. 101, 2699–2706 (1996). doi:10.1029/95JA02212

    Article  ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Modeling variability of plasma conditions in the Io torus. J. Geophys. Res. 108, 1276 (2003)

    Article  Google Scholar 

  • P.A. Delamere, F. Bagenal, Longitudinal plasma density variations at Saturn caused by hot electrons. Geophys. Res. Lett. 35, 3107 (2008). doi:10.1029/2007GL031095

    Article  ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Jupiter and Saturn: Colossal comets? (2013 in preparation)

    Google Scholar 

  • P.A. Delamere, F. Bagenal, V. Dols, L.C. Ray, Saturn’s neutral torus versus Jupiter’s plasma torus. Geophys. Res. Lett. 34, 9105 (2007). doi:10.1029/2007GL029437

    Article  ADS  Google Scholar 

  • M.D. Desch, M.L. Kaiser, Voyager measurement of the rotation period of Saturn’s magnetic field. Geophys. Res. Lett. 8, 253–256 (1981). doi:10.1029/GL008i003p00253

    Article  ADS  Google Scholar 

  • V. Dols, P.A. Delamere, F. Bagenal, A multispecies chemistry model of Io’s local interaction with the Plasma Torus. J. Geophys. Res. 113, 9208 (2008). doi:10.1029/2007JA012805

    Article  Google Scholar 

  • V. Dols, P.A. Delamere, F. Bagenal, W.S. Kurth, W.R. Paterson, Asymmetry of Io’s outer atmosphere: Constraints from five Galileo flybys. J. Geophys. Res., Planets 117, 10010 (2012). doi:10.1029/2012JE004076

    Article  ADS  Google Scholar 

  • S.A. Espinosa, M.K. Dougherty, Periodic perturbations in Saturn’s magnetic field. Geophys. Res. Lett. 27, 2785–2788 (2000). doi:10.1029/2000GL000048

    Article  ADS  Google Scholar 

  • A.J. Farmer, Saturn in hot water: Viscous evolution of the Enceladus torus. Icarus 202, 280–286 (2009). doi:10.1016/j.icarus.2009.02.031

    Article  ADS  Google Scholar 

  • K.M. Ferrière, N. André, A mixed magnetohydrodynamic-kinetic theory of low-frequency waves and instabilities in stratified, gyrotropic, two-component plasmas. J. Geophys. Res. 108, 1308 (2003). doi:10.1029/2003JA009883

    Article  Google Scholar 

  • K.M. Ferrière, C. Zimmer, M. Blanc, Magnetohydrodynamic waves and gravitational/centrifugal instability in rotating systems. J. Geophys. Res. 104, 17335–17356 (1999). doi:10.1029/1999JA900167

    Article  ADS  Google Scholar 

  • B.L. Fleshman, The roles of dissociation and velocity-dependent charge exchange in Saturn’s extended neutral clouds, in Magnetospheres of the Outer Planets (2011)

    Google Scholar 

  • B.L. Fleshman, P.A. Delamere, F. Bagenal, A sensitivity study of the Enceladus torus. J. Geophys. Res., Planets 115, 4007 (2010a). doi:10.1029/2009JE003372

    Article  ADS  Google Scholar 

  • B.L. Fleshman, P.A. Delamere, F. Bagenal, Modeling the Enceladus plume-plasma interaction. Geophys. Res. Lett. 37, 3202 (2010b). doi:10.1029/2009GL041613

    Article  ADS  Google Scholar 

  • B.L. Fleshman, P.A. Delamere, F. Bagenal, T. Cassidy, The roles of charge exchange and dissociation in spreading Saturn’s neutral clouds. J. Geophys. Res., Planets 117, 5007 (2012). doi:10.1029/2011JE003996

    Article  ADS  Google Scholar 

  • L.A. Frank, W.R. Paterson, Intense electron beams observed at Io with the Galileo spacecraft. J. Geophys. Res. 104, 28657 (1999)

    Article  ADS  Google Scholar 

  • L.A. Frank, W.R. Paterson, Production of hydrogen ions at Io. J. Geophys. Res. 104, 10345–10354 (1999). doi:10.1029/1999JA900052

    Article  ADS  Google Scholar 

  • L.A. Frank, W.R. Paterson, Observations of plasmas in the Io torus with the Galileo spacecraft. J. Geophys. Res. 105, 16017–16034 (2000). doi:10.1029/1999JA000250

    Article  ADS  Google Scholar 

  • L.A. Frank, W.R. Paterson, Passage through lo’s ionospheric plasmas by the Galileo spacecraft. J. Geophys. Res. 106(A11), 26209–26224 (2001). doi:10.1029/2000JA002503

    Article  ADS  Google Scholar 

  • L.A. Frank, W.R. Paterson, K.L. Ackerson, V.M. Vasyliunas, F.V. Coroniti, S.J. Bolton, Plasma observations at Io with the Galileo spacecraft. Science 274(5286), 394–395 (1996). doi:10.1126/science.274.5286.394

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Vortex-associated reconnection for northward IMF in the Kronian magnetosphere. Geophys. Res. Lett. 34, 23201 (2007)

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115, 9219 (2010). doi:10.1029/2009JA015228

    Article  Google Scholar 

  • G. Giampieri, M.K. Dougherty, E.J. Smith, C.T. Russell, A regular period for Saturn’s magnetic field that may track its internal rotation. Nature 441, 62–64 (2006). doi:10.1038/nature04750

    Article  ADS  Google Scholar 

  • J.A. Gledhill, Magnetosphere of Jupiter. Nature 214, 155 (1967). doi:10.1038/214155a0

    Article  ADS  Google Scholar 

  • T. Gold, Motions in the magnetosphere of the earth. J. Geophys. Res. 64, 1219–1224 (1959)

    Article  ADS  Google Scholar 

  • P. Goldreich, A.J. Farmer, Spontaneous axisymmetry breaking of the external magnetic field at Saturn. J. Geophys. Res. 112, 5225 (2007). doi:10.1029/2006JA012163

    Article  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, T.F. Averkamp, B. Cecconi, A. Lecacheux, P. Zarka, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Roux, C. Harvey, P. Louarn, R. Bostrom, G. Gustafsson, J.-E. Wahlund, M.D. Desch, W.M. Farrell, M.L. Kaiser, K. Goetz, P.J. Kellogg, G. Fischer, H.-P. Ladreiter, H. Rucker, H. Alleyne, A. Pedersen, Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307, 1255–1259 (2005). doi:10.1126/science.1105356

    Article  ADS  Google Scholar 

  • D.A. Gurnett, A.M. Persoon, W.S. Kurth, J.B. Groene, T.F. Averkamp, M.K. Dougherty, D.J. Southwood, The variable rotation period of the inner region of Saturn’s plasma disk. Science 316, 442 (2007). doi:10.1126/science.1138562

    Article  ADS  Google Scholar 

  • D.A. Gurnett, A.M. Persoon, J.B. Groene, A.J. Kopf, G.B. Hospodarsky, W.S. Kurth, A north-south difference in the rotation rate of auroral hiss at Saturn: Comparison to Saturn’s kilometric radio emission. Geophys. Res. Lett. 36, 21108 (2009). doi:10.1029/2009GL040774

    Article  ADS  Google Scholar 

  • K.C. Hansen, A.J. Ridley, G.B. Hospodarsky, N. Achilleos, M.K. Dougherty, T.I. Gombosi, G. Tóth, Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32, 20 (2005). doi:10.1029/2005GL022835

    Article  Google Scholar 

  • R.E. Hartle, E.C. Sittler, F.M. Neubauer, R.E. Johnson, H.T. Smith, F. Crary, D.J. McComas, D.T. Young, A.J. Coates, D. Simpson, S. Bolton, D. Reisenfeld, K. Szego, J.J. Berthelier, A. Rymer, J. Vilppola, J.T. Steinberg, N. Andre, Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons with Voyager 1. Planet. Space Sci. 54, 1211–1224 (2006). doi:10.1016/j.pss.2006.05.029

    Article  ADS  Google Scholar 

  • S.L.G. Hess, P. Delamere, V. Dols, B. Bonfond, D. Swift, Power transmission and particle acceleration along the Io flux tube. J. Geophys. Res. 115, 06205 (2010). doi:10.1029/2009JA014928

    Google Scholar 

  • T.W. Hill, Interchange stability of a rapidly rotating magnetosphere. Planet. Space Sci. 24, 1151–1154 (1976)

    Article  ADS  Google Scholar 

  • T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 25, 6554–6558 (1979)

    Article  ADS  Google Scholar 

  • T.W. Hill, Effect of the acceleration current on the centrifugal interchange instability. J. Geophys. Res. 111, A03214 (2006). doi:10.1029/2005JA011338

    ADS  Google Scholar 

  • T.W. Hill, A.J. Dessler, L.J. Maher, Corotating magnetospheric convection. J. Geophys. Res. 86, 9020–9028 (1981). doi:10.1029/JA086iA11p09020

    Article  ADS  Google Scholar 

  • T.W. Hill, A.M. Rymer, J.L. Burch, F.J. Crary, D.T. Young, M.F. Thomsen, D. Delapp, N. André, A.J. Coates, G.R. Lewis, Evidence for rotationally driven plasma transport in Saturn’s magnetosphere. Geophys. Res. Lett. 32, 14 (2005). doi:10.1029/2005GL022620

    Article  Google Scholar 

  • T.W. Hill, M.F. Thomsen, M.G. Henderson, R.L. Tokar, A.J. Coates, H.J. McAndrews, G.R. Lewis, D.G. Mitchell, C.M. Jackman, C.T. Russell, M.K. Dougherty, F.J. Crary, D.T. Young, Plasmoids in Saturn’s magnetotail. J. Geophys. Res. 113, 1214 (2008). doi:10.1029/2007JA012626

    Google Scholar 

  • T.W. Hill, A.J. Dessler, C.K. Goertz, Magnetospheric models, ed. by A.J. Dessler 1983, pp. 353–394

    Google Scholar 

  • T.S. Huang, T.W. Hill, Drift wave instability in the Io plasma torus. J. Geophys. Res. 96, 14075 (1991). doi:10.1029/91JA01170

    Article  ADS  Google Scholar 

  • D.E. Huddleston, R.J. Strangeway, J. Warnecke, C.T. Russell, M.G. Kivelson, F. Bagenal, Ion cyclotron waves in the Io torus during the Galileo encounter: Warm plasma dispersion analysis. Geophys. Res. Lett. 24, 2143 (1997). doi:10.1029/97GL01203

    Article  ADS  Google Scholar 

  • D.E. Huddleston, R.J. Strangeway, J. Warnecke, C.T. Russell, M.G. Kivelson, Ion cyclotron waves in the Io torus: Wave dispersion, free energy analysis, and \(\mathrm{SO}_{2}^{+}\) source rate estimates. J. Geophys. Res. 103, 19887–19900 (1998). doi:10.1029/97JE03557

    Article  ADS  Google Scholar 

  • D.E. Huddleston, R.J. Strangeway, X. Blanco-Cano, C.T. Russell, M.G. Kivelson, K.K. Khurana, Mirror-mode structures at the Galileo-Io flyby: Instability criterion and dispersion analysis. J. Geophys. Res. 104, 17479–17490 (1999). doi:10.1029/1999JA900195

    Article  ADS  Google Scholar 

  • G. Ioaniddis, N. Brice, Plasma densities in the Jovian magnetosphere: plasma slingshot or Maxwell demon? Icarus 14, 360–373 (1971). doi:10.1016/0019-1035(71)90007-8

    Article  ADS  Google Scholar 

  • C.M. Jackman, C.S. Arridge, Solar cycle effects on the dynamics of Jupiter’s and Saturn’s magnetospheres. Solar Phys. 274(1–2), 481–502 (2011). doi:10.1007/s11207-011-9748-z

    Article  ADS  Google Scholar 

  • C.M. Jackman, L. Lamy, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, M.K. Dougherty, On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res. 114, 8211 (2009). doi:10.1029/2008JA013997

    Google Scholar 

  • X. Jia, K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, A.J. Ridley, Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. J. Geophys. Res. 117, 5225 (2012). doi:10.1029/2012JA017575

    Google Scholar 

  • R.E. Johnson, H.T. Smith, O.J. Tucker, M. Liu, M.H. Burger, E.C. Sittler, R.L. Tokar, The Enceladus and OH Tori at Saturn. Astrophys. J. Lett. 644, 137–139 (2006). doi:10.1086/505750

    Article  ADS  Google Scholar 

  • S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, 1309 (2002). doi:10.1029/2001JA009146

    Article  Google Scholar 

  • K. Kabin, M.R. Combi, T.I. Gombosi, D.L. DeZeeuw, K.C. Hansen, K.G. Powell, Io’s magnetospheric interaction: an MHD model with day-night asymmetry. Planet. Space Sci. 49, 337–344 (2001)

    Article  ADS  Google Scholar 

  • S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis, S.M. Krimigis, M.K. Dougherty, A.J. Coates, D.T. Young, K.C. Hansen, N. Krupp, A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements. J. Geophys. Res. 115, 6207 (2010). doi:10.1029/2009JA014262

    Article  Google Scholar 

  • M. Kane, D.G. Mitchell, J.F. Carbary, S.M. Krimigis, F.J. Crary, Plasma convection in Saturn’s outer magnetosphere determined from ions detected by the Cassini INCA experiment. Geophys. Res. Lett. 35, 4102 (2008). doi:10.1029/2007GL032342

    Article  ADS  Google Scholar 

  • S. Kellett, C.S. Arridge, E.J. Bunce, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, A.M. Persoon, N. Sergis, R.J. Wilson, Nature of the ring current in Saturn’s dayside magnetosphere. J. Geophys. Res. 115, 8201 (2010). doi:10.1029/2009JA015146

    Article  Google Scholar 

  • S. Kellett, C.S. Arridge, E.J. Bunce, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, A.M. Persoon, N. Sergis, R.J. Wilson, Saturn’s ring current: Local time dependence and temporal variability. J. Geophys. Res. 116, 5220 (2011). doi:10.1029/2010JA016216

    Article  Google Scholar 

  • T.J. Kennelly, J.S. Leisner, G.B. Hospodarsky, D.A. Gurnett, Ordering of injection events within Saturnian SLS longitude and local time. J. Geophys. Res. 118, 832–838 (2013). doi:10.1002/jgra.50152

    Article  Google Scholar 

  • K. Khurana, M. Kivelson, M. Volwerk, The interactions of Europa and Callisto with the magnetosphere of Jupiter, in 34th COSPAR Scientific Assembly. COSPAR Meeting, vol. 34 (2002)

    Google Scholar 

  • K.K. Khurana, M.K. Dougherty, C.T. Russell, J.S. Leisner, Mass loading of Saturn’s magnetosphere near Enceladus. J. Geophys. Res. 112, 8203 (2007). doi:10.1029/2006JA012110

    Article  Google Scholar 

  • K.K. Khurana, X. Jia, M.G. Kivelson, F. Nimmo, G. Schubert, C.T. Russell, Evidence of a global magma ocean in Io’s interior. Science 332, 1186 (2011). doi:10.1126/science.1201425

    Article  ADS  Google Scholar 

  • A. Kidder, R.M. Winglee, E.M. Harnett, Regulation of the centrifugal interchange cycle in Saturn’s inner magnetosphere. J. Geophys. Res. 114, 2205 (2009). doi:10.1029/2008JA013100

    Article  Google Scholar 

  • A. Kidder, C.S. Paty, R.M. Winglee, E.M. Harnett, External triggering of plasmoid development at Saturn. J. Geophys. Res. 117, 7206 (2012). doi:10.1029/2012JA017625

    Article  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, 12209 (2005)

    Article  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, R.J. Walker, J. Warnecke, C.T. Russell, J.A. Linker, D.J. Southwood, C. Polanskey, Io’s interaction with the plasma torus: Galileo magnetometer report. Science 274, 396–398 (1996). doi:10.1126/science.274.5286.396

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, C.T. Russell, R.J. Walker, P.J. Coleman, F.V. Coroniti, J. Green, S. Joy, R.L. McPherron, C. Polanskey, D.J. Southwood, L. Bennett, J. Warnecke, D.E. Huddleston, Galileo at Jupiter—changing states of the magnetosphere and first looks at Io and Ganymede. Adv. Space Res. 20, 193–204 (1997a). doi:10.1016/S0273-1177(97)00533-4

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, C.T. Russell, R.J. Walker, Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange? Geophys. Res. Lett. 24, 2127 (1997b). doi:10.1029/97GL02202

    Article  ADS  Google Scholar 

  • A. Kopp, W.-H. Ip, Asymmetric mass loading effect at Titan’s ionosphere. J. Geophys. Res. 106, 8323–8332 (2001). doi:10.1029/2000JA900140

    Article  ADS  Google Scholar 

  • H. Kriegel, S. Simon, U. Motschmann, J. Saur, F.M. Neubauer, A.M. Persoon, M.K. Dougherty, D.A. Gurnett, Influence of negatively charged plume grains on the structure of Enceladus’ Alfvén wings: Hybrid simulations versus Cassini Magnetometer data. J. Geophys. Res. 116, 10223 (2011). doi:10.1029/2011JA016842

    Article  Google Scholar 

  • S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, S. Livi, E.C. Roelof, J. Dandouras, T.P. Armstrong, B.H. Mauk, C. Paranicas, P.C. Brandt, S. Bolton, A.F. Cheng, T. Choo, G. Gloeckler, J. Hayes, K.C. Hsieh, W.-H. Ip, S. Jaskulek, E.P. Keath, E. Kirsch, M. Kusterer, A. Lagg, L.J. Lanzerotti, D. LaVallee, J. Manweiler, R.W. McEntire, W. Rasmuss, J. Saur, F.S. Turner, D.J. Williams, J. Woch, Dynamics of Saturn’s magnetosphere from MIMI during Cassini’s orbital insertion. Science 307, 1270–1273 (2005). doi:10.1126/science.1105978

    Article  ADS  Google Scholar 

  • W.S. Kurth, T.F. Averkamp, et al., An update to a Saturnian longitude system based on kilometric radio emissions. J. Geophys. Res. 113, 05222 (2008)

    Article  Google Scholar 

  • L. Lamy, Variability of southern and northern periodicities of Saturn Kilometric Radiation, in Planetary, Solar and Heliospheric Radio Emissions (PRE VII) (2011), pp. 38–50

    Google Scholar 

  • L. Lamy, R. Prangé, W. Pryor, J. Gustin, S.V. Badman, H. Melin, T. Stallard, D.G. Mitchell, P.C. Brandt, Multispectral simultaneous diagnosis of Saturn’s aurorae throughout a planetary rotation. J. Geophys. Res. 118 (2013). doi:10.1002/jgra.50404.

    Google Scholar 

  • A.J. Lazarus, R.L. McNutt Jr., Low-energy plasma ion observations in Saturn’s magnetosphere. J. Geophys. Res. 88, 8831–8846 (1983). doi:10.1029/JA088iA11p08831

    Article  ADS  Google Scholar 

  • S.A. Ledvina, S.H. Brecht, J.G. Luhmann, Ion distributions of 14 amu pickup ions associated with Titan’s plasma interaction. Geophys. Res. Lett. 31, 17 (2004). doi:10.1029/2004GL019861

    Article  Google Scholar 

  • J.S. Leisner, C.T. Russell, K.K. Khurana, M.K. Dougherty, N. André, Warm flux tubes in the E-ring plasma torus: Initial Cassini magnetometer observations. Geophys. Res. Lett. 32, 14 (2005). doi:10.1029/2005GL022652

    Article  Google Scholar 

  • J.S. Leisner, C.T. Russell, M.K. Dougherty, X. Blanco-Cano, R.J. Strangeway, C. Bertucci, Ion cyclotron waves in Saturn’s E ring: Initial Cassini observations. Geophys. Res. Lett. 33, 11101 (2006). doi:10.1029/2005GL024875

    Article  ADS  Google Scholar 

  • J.S. Leisner, C.T. Russell, H.Y. Wei, M.K. Dougherty, Probing Saturn’s ion cyclotron waves on high-inclination orbits: Lessons for wave generation. J. Geophys. Res. 116, 9235 (2011). doi:10.1029/2011JA016555

    Article  Google Scholar 

  • E. Lellouch, M.A. McGrath, K.L. Jessup, Io’s atmosphere, ed. by R.M.C. Lopes, J.R. Spencer. Io After Galileo. A New View of Jupiter’s Volcanic Moon. Springer Praxis Books/Geophysical Sciences (Springer, Berlin, 2007), pp. 231–264. doi:10.1007/978-3-540-48841-5_10

    Google Scholar 

  • B. Levitt, D. Maslovsky, M.E. Mauel, Observation of centrifugally driven interchange instabilities in a plasma confined by a magnetic dipole. Phys. Rev. Lett. 94, 175002 (2005a). doi:10.1103/PhysRevLett.94.175002

    Article  ADS  Google Scholar 

  • B. Levitt, D. Maslovsky, M.E. Mauel, J. Waksman, Excitation of the centrifugally driven interchange instability in a plasma confined by a magnetic dipolea). Phys. Plasmas 12(5), 055703 (2005b). doi:10.1063/1.1888685

    Article  ADS  Google Scholar 

  • J.A. Linker, K.K. Khurana, M.G. Kivelson, R.J. Walker, MHD simulations of Io’s interaction with the plasma torus. J. Geophys. Res. 103, 19867 (1998)

    Article  ADS  Google Scholar 

  • A.S. Lipatov, M.R. Combi, Effects of kinetic processes in shaping Io’s global plasma environment: A 3D hybrid model. Icarus 180, 412–427 (2006). doi:10.1016/j.icarus.2005.08.012

    Article  ADS  Google Scholar 

  • X. Liu, T.W. Hill, Effects of finite plasma pressure on centrifugally driven convection in Saturn’s inner magnetosphere. J. Geophys. Res. 117, 7216 (2012). doi:10.1029/2012JA017827

    Article  Google Scholar 

  • X. Liu, T.W. Hill, R.A. Wolf, S. Sazykin, R.W. Spiro, H. Wu, Numerical simulation of plasma transport in Saturn’s inner magnetosphere using the Rice Convection Model. J. Geophys. Res. 115, 12254 (2010). doi:10.1029/2010JA015859

    Google Scholar 

  • P. Louarn, A. Roux, S. Perraut, W. Kurth, D. Gurnett, A study of the large-scale dynamics of the Jovian magnetosphere using the Galileo Plasma Wave Experiment. Geophys. Res. Lett. 25, 2905–2908 (1998). doi:10.1029/98GL01774

    Article  ADS  Google Scholar 

  • P. Louarn, A. Roux, S. Perraut, W.S. Kurth, D.A. Gurnett, A study of the Jovian “energetic magnetospheric events” observed by Galileo: role in the radial plasma transport. J. Geophys. Res. 105, 13073–13088 (2000). doi:10.1029/1999JA900478

    Article  ADS  Google Scholar 

  • P. Louarn, B.H. Mauk, M.G. Kivelson, W.S. Kurth, A. Roux, C. Zimmer, D.A. Gurnett, D.J. Williams, A multi-instrument study of a Jovian magnetospheric disturbance. J. Geophys. Res. 106, 29883–29898 (2001). doi:10.1029/2001JA900067

    Article  ADS  Google Scholar 

  • Y.-J. Ma, A.F. Nagy, T.E. Cravens, I.V. Sokolov, J. Clark, K.C. Hansen, 3-D global MHD model prediction for the first close flyby of Titan by Cassini. Geophys. Res. Lett. 31, 22803 (2004). doi:10.1029/2004GL021215

    Article  ADS  Google Scholar 

  • H.R. Martens, D.B. Reisenfeld, J.D. Williams, R.E. Johnson, H.T. Smith, Observations of molecular oxygen ions in Saturn’s inner magnetosphere. Geophys. Res. Lett. 35, 20103 (2008). doi:10.1029/2008GL035433

    Article  ADS  Google Scholar 

  • B.H. Mauk, S.A. Gary, M. Kane, E.P. Keath, S.M. Krimigis, T.P. Armstrong, Hot plasma parameters of Jupiter’s inner magnetosphere. J. Geophys. Res. 101, 7685–7696 (1996). doi:10.1029/96JA00006

    Article  ADS  Google Scholar 

  • B.H. Mauk, D.J. Williams, R.W. McEntire, Energy-time dispersed charged particle signatures of dynamic injections in Jupiter’s inner magnetosphere. Geophys. Res. Lett. 24, 2949–2952 (1997). doi:10.1029/97GL03026

    Article  ADS  Google Scholar 

  • B.H. Mauk, R.W. McEntire, D.J. Williams, A. Lagg, E.C. Roelof, S.M. Krimigis, T.P. Armstrong, T.A. Fritz, L.J. Lanzerotti, J.G. Roederer, B. Wilken, Galileo-measured depletion of near-Io hot ring current plasmas since the Voyager epoch. J. Geophys. Res. 103, 4715 (1998). doi:10.1029/97JA02343

    Article  ADS  Google Scholar 

  • B.H. Mauk, D.J. Williams, R.W. McEntire, K.K. Khurana, J.G. Roederer, Storm-like dynamics of Jupiter’s inner and middle magnetosphere. J. Geophys. Res. 104, 22759–22778 (1999). doi:10.1029/1999JA900097

    Article  ADS  Google Scholar 

  • B.H. Mauk, J.T. Clarke, D. Grodent, J.H. Waite, C.P. Paranicas, D.J. Williams, Transient aurora on Jupiter from injections of magnetospheric electrons. Nature 415, 1003–1005 (2002)

    Article  ADS  Google Scholar 

  • B.H. Mauk, J. Saur, D.G. Mitchell, E.C. Roelof, P.C. Brandt, T.P. Armstrong, D.C. Hamilton, S.M. Krimigis, N. Krupp, S.A. Livi, J.W. Manweiler, C.P. Paranicas, Energetic particle injections in Saturn’s magnetosphere. Geophys. Res. Lett. 32, 14 (2005). doi:10.1029/2005GL022485

    Article  Google Scholar 

  • B.H. Mauk, D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, C. Paranicas, E. Roussos, C.T. Russell, D.E. Shemansky, E.C. Sittler, R.M. Thorne, Fundamental plasma processes in Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009), p. 281. doi:10.1007/978-1-4020-9217-6_11

    Chapter  Google Scholar 

  • S. Maurice, M. Blanc, R. Prangé, E.C. Sittler, The magnetic-field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn. Planet. Space Sci. 45, 1449–1465 (1997)

    Article  ADS  Google Scholar 

  • M.A. McGrath, E. Lellouch, D.F. Strobel, P.D. Feldman, R.E. Johnson, Satellite atmospheres, in Jupiter: The Planet, Satellites and Magnetosphere (2004), pp. 457–483

    Google Scholar 

  • R.L. McNutt, J.W. Belcher, H.S. Bridge, Positive ion observations in the middle magnetosphere of Jupiter. J. Geophys. Res. 86, 8319–8342 (1981). doi:10.1029/JA086iA10p08319

    Article  ADS  Google Scholar 

  • R.L. Melrose, Rotational effects on the distribution of thermal plasma in the magnetosphere of Jupiter. Planet. Space Sci. 15, 381–393 (1967). doi:10.1016/0032-0633(67)90202-4

    Article  ADS  Google Scholar 

  • J.D. Menietti, J.B. Groene, T.F. Averkamp, G.B. Hospodarsky, W.S. Kurth, D.A. Gurnett, P. Zarka, Influence of Saturnian moons on Saturn kilometric radiation. J. Geophys. Res. 112, 8211 (2007). doi:10.1029/2007JA012331

    Article  Google Scholar 

  • D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.-C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009). doi:10.1016/j.pss.2009.04.002

    Article  ADS  Google Scholar 

  • D.G. Mitchell, P.C. Brandt, J.F. Carbary, W.S. Kurth, S.M. Krimigis, C. Paranicas, N. Krupp, D.C. Hamilton, B.H. Mauk, G.B. Hospodarsky, M.K. Dougherty, W.R. Pryor, Injection, interchange and reconnection: Energetic particle observations in Saturn’s magnetotail, in Magnetotails in the Solar System. AGU Geophysical Monograph Series (2015)

    Google Scholar 

  • A.F. Nagy, Y. Liu, K.C. Hansen, K. Kabin, T.I. Gombosi, M.R. Combi, D.L. DeZeeuw, K.G. Powell, A.J. Kliore, The interaction between the magnetosphere of Saturn and Titan’s ionosphere. J. Geophys. Res. 106, 6151–6160 (2001). doi:10.1029/2000JA000183

    Article  ADS  Google Scholar 

  • W.A. Newcomb, Convective instability induced by gravity in a plasma with a frozen-in magnetic field. Phys. Fluids 4, 391–396 (1961). doi:10.1063/1.1706342

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Nichols, S. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Ann. Geophys. 22, 1799–1827 (2004). doi:10.5194/angeo-22-1799-2004

    Article  ADS  Google Scholar 

  • C. Paranicas, D.G. Mitchell, E.C. Roelof, P.C. Brandt, D.J. Williams, S.M. Krimigis, B.H. Mauk, Periodic intensity variations in global ENA images of Saturn. Geophys. Res. Lett. 32, 21101 (2005). doi:10.1029/2005GL023656

    Article  ADS  Google Scholar 

  • C. Paranicas, D.G. Mitchell, E.C. Roelof, B.H. Mauk, S.M. Krimigis, P.C. Brandt, M. Kusterer, F.S. Turner, J. Vandegriff, N. Krupp, Energetic electrons injected into Saturn’s neutral gas cloud. Geophys. Res. Lett. 34, 2109 (2007). doi:10.1029/2006GL028676

    Article  ADS  Google Scholar 

  • D.H. Pontius Jr., T.W. Hill, Rotation driven plasma transport—the coupling of macroscopic motion and microdiffusion. J. Geophys. Res. 94, 15041–15053 (1989). doi:10.1029/JA094iA11p15041

    Article  ADS  Google Scholar 

  • D.H. Pontius Jr., T.W. Hill, M.E. Rassbach, Steady state plasma transport in a corotation-dominated magnetosphere. Geophys. Res. Lett. 13, 1097–1100 (1986). doi:10.1029/GL013i011p01097

    Article  ADS  Google Scholar 

  • D.H. Pontius, T.W. Hill, Plasma mass loading from the extended neutral gas torus of Enceladus as inferred from the observed plasma corotation lag. Geophys. Res. Lett. 36, 23103 (2009). doi:10.1029/2009GL041030

    Article  ADS  Google Scholar 

  • D.H. Pontius, R.A. Wolf, T.W. Hill, R.W. Spiro, Y.S. Yang, W.H. Smyth, Velocity shear impoundment of the Io plasma torus. J. Geophys. Res. 103, 19935–19946 (1998). doi:10.1029/98JE00538

    Article  ADS  Google Scholar 

  • W.R. Pryor, A.M. Rymer, D.G. Mitchell, T.W. Hill, D.T. Young, J. Saur, G.H. Jones, S. Jacobsen, S.W.H. Cowley, B.H. Mauk, A.J. Coates, J. Gustin, D. Grodent, J.-C. Gérard, L. Lamy, J.D. Nichols, S.M. Krimigis, L.W. Esposito, M.K. Dougherty, A.J. Jouchoux, A.I.F. Stewart, W.E. McClintock, G.M. Holsclaw, J.M. Ajello, J.E. Colwell, A.R. Hendrix, F.J. Crary, J.T. Clarke, X. Zhou, The auroral footprint of Enceladus on Saturn. Nature 472, 331–333 (2011). doi:10.1038/nature09928

    Article  ADS  Google Scholar 

  • M. Rodriguez-Martinez, X. Blanco-Cano, C. Russell, J.S. Leisner, M.M. Cowee, M.K. Dougherty, Harmonic growth of ion cyclotron waves in Saturn’s Magnetosphere, in 37th COSPAR Scientific Assembly. COSPAR Meeting, vol. 37 (2008), p. 2638

    Google Scholar 

  • M. Rodríguez-Martínez, X. Blanco-Cano, C.T. Russell, J.S. Leisner, R.J. Wilson, M.K. Dougherty, Harmonic growth of ion-cyclotron waves in Saturn’s magnetosphere. J. Geophys. Res. 115, 9207 (2010). doi:10.1029/2009JA015000

    Article  Google Scholar 

  • A. Runov, V. Angelopoulos, X.-Z. Zhou, X.-J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116, 5216 (2011). doi:10.1029/2010JA016316

    Article  Google Scholar 

  • C.T. Russell, D.E. Huddleston, Ion-cyclotron waves at Io. Adv. Space Res. 26, 1505–1511 (2000)

    Article  ADS  Google Scholar 

  • C.T. Russell, M.G. Kivelson, Detection of SO in Io’s exosphere. Science 287, 1998–1999 (2000). doi:10.1126/science.287.5460.1998

    Article  ADS  Google Scholar 

  • C.T. Russell, D.E. Huddleston, R.J. Strangeway, X. Blanco-Cano, M.G. Kivelson, K.K. Khurana, L.A. Frank, W. Paterson, D.A. Gurnett, W.S. Kurth, Mirror-mode structures at the Galileo-Io flyby: Observations. J. Geophys. Res. 104, 17471–17478 (1999). doi:10.1029/1999JA900202

    Article  ADS  Google Scholar 

  • C.T. Russell, M.G. Kivelson, K.K. Khurana, D.E. Huddleston, Circulation and dynamics in the Jovian magnetosphere. Adv. Space Res. 26, 1671–1676 (2000). doi:10.1016/S0273-1177(00)00115-0

    Article  ADS  Google Scholar 

  • C.T. Russell, Y.L. Wang, X. Blanco-Cano, R.J. Strangeway, The Io mass-loading disk: Constraints provided by ion cyclotron wave observations. J. Geophys. Res. 106, 26233–26242 (2001). doi:10.1029/2001JA900029

    Article  ADS  Google Scholar 

  • C.T. Russell, X. Blanco-Cano, M.G. Kivelson, Ion cyclotron waves in Io’s wake region. Planet. Space Sci. 51, 233–238 (2003a). doi:10.1016/S0032-0633(02)00198-8

    Article  ADS  Google Scholar 

  • C.T. Russell, X. Blanco-Cano, Y.L. Wang, M.G. Kivelson, Ion cyclotron waves at Io: implications for the temporal variation of Io’s atmosphere. Planet. Space Sci. 51, 937–944 (2003b). doi:10.1016/j.pss.2003.05.005

    Article  ADS  Google Scholar 

  • C.T. Russell, M.G. Kivelson, K.K. Khurana, Statistics of depleted flux tubes in the Jovian magnetosphere. Planet. Space Sci. 53, 937–943 (2005). doi:10.1016/j.pss.2005.04.007

    Article  ADS  Google Scholar 

  • C.T. Russell, J.S. Leisner, C.S. Arridge, M.K. Dougherty, X. Blanco-Cano, Nature of magnetic fluctuations in Saturn’s middle magnetosphere. J. Geophys. Res. 111, 12205 (2006). doi:10.1029/2006JA011921

    Article  Google Scholar 

  • A.M. Rymer, B.H. Mauk, T.W. Hill, C. Paranicas, N. André, E.C. Sittler, D.G. Mitchell, H.T. Smith, R.E. Johnson, A.J. Coates, D.T. Young, S.J. Bolton, M.F. Thomsen, M.K. Dougherty, Electron sources in Saturn’s magnetosphere. J. Geophys. Res. 112, 2201 (2007). doi:10.1029/2006JA012017

    Article  Google Scholar 

  • A.M. Rymer, B.H. Mauk, T.W. Hill, C. Paranicas, D.G. Mitchell, A.J. Coates, D.T. Young, Electron circulation in Saturn’s magnetosphere. J. Geophys. Res. 113, 1201 (2008). doi:10.1029/2007JA012589

    Article  Google Scholar 

  • A.M. Rymer, B.H. Mauk, T.W. Hill, N. André, D.G. Mitchell, C. Paranicas, D.T. Young, H.T. Smith, A.M. Persoon, J.D. Menietti, G.B. Hospodarsky, A.J. Coates, M.K. Dougherty, Cassini evidence for rapid interchange transport at Saturn. Planet. Space Sci. 57, 1779–1784 (2009). doi:10.1016/j.pss.2009.04.010

    Article  ADS  Google Scholar 

  • J. Saur, D.F. Strobel, F.M. Neubauer, Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere. J. Geophys. Res. 103, 19947–19962 (1998). doi:10.1029/97JE03556

    Article  ADS  Google Scholar 

  • J. Saur, F.M. Neubauer, D.F. Strobel, M.E. Summers, Three-dimensional plasma simulation of Io’s interaction with the Io plasma torus: Asymmetric plasma flow. J. Geophys. Res. 104, 25105–25126 (1999). doi:10.1029/1999JA900304

    Article  ADS  Google Scholar 

  • J. Saur, F.M. Neubauer, D.F. Strobel, M.E. Summers, Interpretation of Galileo’s Io plasma and field observations: I0, I24, and I27 flybys and close polar passes. J. Geophys. Res. 107, 1422 (2002). doi:10.1029/2001JA005067

    Article  Google Scholar 

  • J. Saur, F.M. Neubauer, J.E.P. Connerney, P. Zarka, M.G. Kivelson, Plasma interaction of Io with its plasma torus, in Jupiter: The Planet, Satellites and Magnetosphere (2004), pp. 537–560

    Google Scholar 

  • P. Schippers, M. Blanc, N. André, I. Dandouras, G.R. Lewis, L.K. Gilbert, A.M. Persoon, N. Krupp, D.A. Gurnett, A.J. Coates, S.M. Krimigis, D.T. Young, M.K. Dougherty, Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res. 113, 7208 (2008). doi:10.1029/2008JA013098

    Article  Google Scholar 

  • M. Schulz, Jupiter’s radiation belts. Space Sci. Rev. 23, 277–318 (1979). doi:10.1007/BF00173813

    Article  ADS  Google Scholar 

  • N. Sergis, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, B.M. Mauk, E.C. Roelof, M. Dougherty, Ring current at Saturn: Energetic particle pressure in Saturn’s equatorial magnetosphere measured with Cassini/MIMI. Geophys. Res. Lett. 34, 09102 (2007). doi:10.1029/2006GL029223

    Article  ADS  Google Scholar 

  • D.E. Shemansky, Energy branching in the Io plasma torus: The failure of neutral cloud theory. J. Geophys. Res. 93, 1773 (1988)

    Article  ADS  Google Scholar 

  • S. Simon, G. Kleindienst, A. Boesswetter, T. Bagdonat, U. Motschmann, K.-H. Glassmeier, J. Schuele, C. Bertucci, M.K. Dougherty, Hybrid simulation of Titan’s magnetic field signature during the Cassini T9 flyby. Geophys. Res. Lett. 34, 24 (2007). doi:10.1029/2007GL029967

    Article  Google Scholar 

  • G.L. Siscoe, A. Eviatar, R.M. Thorne, J.D. Richardson, F. Bagenal, J.D. Sullivan, Ring current impoundment of the Io plasma torus. J. Geophys. Res. 86, 8480–8484 (1981). doi:10.1029/JA086iA10p08480

    Article  ADS  Google Scholar 

  • E.C. Sittler, M. Thomsen, R.E. Johnson, R.E. Hartle, M. Burger, D. Chornay, M.D. Shappirio, D. Simpson, H.T. Smith, A.J. Coates, A.M. Rymer, D.J. McComas, D.T. Young, D. Reisenfeld, M. Dougherty, N. Andre, Erratum to “Cassini observations of Saturn’s inner plasmasphere: Saturn orbit insertion results”. [Planetary and Space Science 54 (2006) 1197–1210]. Planet. Space Sci. 55, 2218–2220 (2007). doi:10.1016/j.pss.2006.11.022

    Article  ADS  Google Scholar 

  • E.C. Sittler, N. Andre, M. Blanc, M. Burger, R.E. Johnson, A. Coates, A. Rymer, D. Reisenfeld, M.F. Thomsen, A. Persoon, M. Dougherty, H.T. Smith, R.A. Baragiola, R.E. Hartle, D. Chornay, M.D. Shappirio, D. Simpson, D.J. McComas, D.T. Young, Ion and neutral sources and sinks within Saturn’s inner magnetosphere: Cassini results. Planet. Space Sci. 56, 3–18 (2008). doi:10.1016/j.pss.2007.06.006

    Article  ADS  Google Scholar 

  • T.E. Skinner, S.T. Durrance, Neutral oxygen and sulfur densities in the Io torus. Astrophys. J. 310, 966–971 (1986). doi:10.1086/164747

    Article  ADS  Google Scholar 

  • C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Jupiter’s thermosphere and magnetosphere. Ann. Geophys. 27, 199–230 (2009)

    Article  ADS  Google Scholar 

  • E.J. Smith, B.T. Tsurutani, Saturn’s magnetosphere—observations of ion cyclotron waves near the Dione L shell. J. Geophys. Res. 88, 7831–7836 (1983). doi:10.1029/JA088iA10p07831

    Article  ADS  Google Scholar 

  • W.H. Smyth, M.L. Marconi, Nature of the Iogenic plasma source in Jupiter’s magnetosphere I. Circumplanetary distribution. Icarus 166(1), 85–106 (2003)

    Article  ADS  Google Scholar 

  • D. Snowden, R. Winglee, C. Bertucci, M. Dougherty, Three-dimensional multifluid simulation of the plasma interaction at Titan. J. Geophys. Res. 112, 12221 (2007). doi:10.1029/2007JA012393

    Article  Google Scholar 

  • D. Snowden, R. Winglee, A. Kidder, Titan at the edge: 1. Titan’s interaction with Saturn’s magnetosphere in the prenoon sector. J. Geophys. Res. 116, 8229 (2011a). doi:10.1029/2011JA016435

    Google Scholar 

  • D. Snowden, R. Winglee, A. Kidder, Titan at the edge: 2. A global simulation of Titan exiting and reentering Saturn’s magnetosphere at 13:16 Saturn local time. J. Geophys. Res. 116, 8230 (2011b). doi:10.1029/2011JA016436

    Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Magnetospheric interchange instability. J. Geophys. Res. 92, 109–116 (1987). doi:10.1029/JA092iA01p00109

    Article  ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Magnetospheric interchange motions. J. Geophys. Res. 94, 299–308 (1989)

    Article  ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. J. Geophys. Res. 106, 6123–6130 (2001). doi:10.1029/2000JA000236

    Article  ADS  Google Scholar 

  • K. Szego, Z. Bebesi, G. Erdos, L. Foldy, F. Crary, D.J. McComas, D.T. Young, S. Bolton, A.J. Coates, A.M. Rymer, R.E. Hartle, E.C. Sittler, D. Reisenfeld, J.J. Bethelier, R.E. Johnson, H.T. Smith, T.W. Hill, J. Vilppola, J. Steinberg, N. Andre, The global plasma environment of Titan as observed by Cassini Plasma Spectrometer during the first two close encounters with Titan. Geophys. Res. Lett. 32, 20 (2005). doi:10.1029/2005GL022646

    Article  Google Scholar 

  • N. Thomas, F. Bagenal, T.W. Hill, J.K. Wilson, The Io neutral clouds and plasma torus, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (2004), pp. 561–591

    Google Scholar 

  • M.F. Thomsen, D.B. Reisenfeld, D.M. Delapp, R.L. Tokar, D.T. Young, F.J. Crary, E.C. Sittler, M.A. McGraw, J.D. Williams, Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, 10220 (2010). doi:10.1029/2010JA015267

    Article  Google Scholar 

  • M.F. Thomsen, E. Roussos, M. Andriopoulou, P. Kollmann, C.S. Arridge, C.P. Paranicas, D.A. Gurnett, R.L. Powell, R.L. Tokar, D.T. Young, Saturn’s inner magnetospheric convection pattern: Further evidence. J. Geophys. Res. 117, 9208 (2012). doi:10.1029/2011JA017482

    Article  Google Scholar 

  • R.M. Thorne, Radiation belt dynamics: The importance of wave-particle interactions. Geophys. Res. Lett. 37, 22107 (2010). doi:10.1029/2010GL044990

    Article  ADS  Google Scholar 

  • R.M. Thorne, T.P. Armstrong, S. Stone, D.J. Williams, R.W. McEntire, S.J. Bolton, D.A. Gurnett, M.G. Kivelson, Galileo evidence for rapid interchange transport in the Io torus. Geophys. Res. Lett. 24, 2131 (1997). doi:10.1029/97GL01788

    Article  ADS  Google Scholar 

  • R.L. Tokar, R.E. Johnson, T.W. Hill, D.H. Pontius, W.S. Kurth, F.J. Crary, D.T. Young, M.F. Thomsen, D.B. Reisenfeld, A.J. Coates, G.R. Lewis, E.C. Sittler, D.A. Gurnett, The interaction of the atmosphere of Enceladus with Saturn’s plasma. Science 311, 1409–1412 (2006). doi:10.1126/science.1121061

    Article  ADS  Google Scholar 

  • R.L. Tokar, R.J. Wilson, R.E. Johnson, M.G. Henderson, M.F. Thomsen, M.M. Cowee, E.C. Sittler, D.T. Young, F.J. Crary, H.J. McAndrews, H.T. Smith, Cassini detection of water-group pick-up ions in the Enceladus torus. Geophys. Res. Lett. 35, 14202 (2008). doi:10.1029/2008GL034749

    Article  ADS  Google Scholar 

  • V.M. Vasyliūnas, Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Field in the Magnetosphere, ed. by B.M. McCormack, A. Renzini. Astrophysics and Space Science Library, vol. 17 (1970), p. 60

    Chapter  Google Scholar 

  • V.M. Vasyliūnas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, New York, 1983), pp. 395–453. ISBN 0521520061 (paperback)

    Chapter  Google Scholar 

  • V.M. Vasyliūnas, Physical origin of pickup currents, in European Planetary Science Congress (2006)

    Google Scholar 

  • V.M. Vasyliūnas, Comparing Jupiter and Saturn: dimensionless input rates from plasma sources within the magnetosphere. Ann. Geophys. 26, 1341–1343 (2008)

    Article  ADS  Google Scholar 

  • V.M. Vasyliūnas, D.H. Pontius, Rotationally driven interchange instability: Reply to André and Ferrière. J. Geophys. Res. 112(A10), A10204 (2007). doi:10.1029/2007JA012457

    Article  ADS  Google Scholar 

  • M. Volwerk, K.K. Khurana, Ion pick-up near the icy Galilean satellites, in American Institute of Physics Conference Series, ed. by J. Le Roux, G.P. Zank, A.J. Coates, V. Florinski. American Institute of Physics Conference Series, vol. 1302 (2010), pp. 263–269. doi:10.1063/1.3529982

    Google Scholar 

  • M. Volwerk, M.G. Kivelson, K.K. Khurana, Wave activity in Europa’s wake: Implications for ion pickup. J. Geophys. Res. 106, 26033–26048 (2001). doi:10.1029/2000JA000347

    Article  ADS  Google Scholar 

  • J.H. Waite, M.R. Combi, W.-H. Ip, T.E. Cravens, R.L. McNutt, W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, W.-L. Tseng, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006). doi:10.1126/science.1121290

    Article  ADS  Google Scholar 

  • M. Walt, Introduction to Geomagnetically Trapped Radiation. Cambridge Atmospheric and Space Science Series, vol. 10 (1994)

    Book  Google Scholar 

  • Y. Wang, C.T. Russell, J. Raeder, The Io mass-loading disk: Model calculations. J. Geophys. Res. 106, 26243–26260 (2001). doi:10.1029/2001JA900062

    Article  ADS  Google Scholar 

  • J. Warnecke, M.G. Kivelson, K.K. Khurana, D.E. Huddleston, C.T. Russell, Ion cyclotron waves observed at Galileo’s Io encounter: Implications for neutral cloud distribution and plasma composition. Geophys. Res. Lett. 24, 2139 (1997). doi:10.1029/97GL01129

    Article  ADS  Google Scholar 

  • D.J. Williams, B. Mauk, R.E. McEntire, E.C. Roelof, S.M. Krimigis, T.P. Armstrong, B. Wilken, J.G. Roederer, T.A. Fritz, L.J. Lanzerotti, Energetic electron beams measured at Io. Bull. Am. Astron. Soc. 28, 1055 (1996)

    ADS  Google Scholar 

  • R.J. Wilson, R.L. Tokar, M.G. Henderson, T.W. Hill, M.F. Thomsen, D.H. Pontius, Cassini plasma spectrometer thermal ion measurements in Saturn’s inner magnetosphere. J. Geophys. Res. 113, 12218 (2008). doi:10.1029/2008JA013486

    Article  Google Scholar 

  • R.M. Winglee, D. Snowden, A. Kidder, Modification of Titan’s ion tail and the Kronian magnetosphere: Coupled magnetospheric simulations. J. Geophys. Res. 114, 5215 (2009). doi:10.1029/2008JA013343

    Google Scholar 

  • R.M. Winglee, A. Kidder, E. Harnett, N. Ifland, C. Paty, D. Snowden, Generation of periodic signatures at Saturn through Titan’s interaction with the centrifugal interchange instability. J. Geophys. Res. 118, 4253–4269 (2013). doi:10.1002/jgra.50397

    Article  Google Scholar 

  • R.A. Wolf, Computer model of inner magnetospheric convection, in Solar-Terrestrial Physics: Principles and Theoretical Foundations, ed. by R.L. Carovillano, J.M. Forbes. Astrophysics and Space Science Library, vol. 104 (1983), p. 342

    Chapter  Google Scholar 

  • M.C. Wong, W.H. Smyth, Model calculations for Io’s atmosphere at Eastern and Western elongations. Icarus 146, 60–74 (2000). doi:10.1006/icar.2000.6362

    Article  ADS  Google Scholar 

  • H. Wu, T.W. Hill, R.A. Wolf, R.W. Spiro, Numerical simulation of fine structure in the Io plasma torus produced by the centrifugal interchange instability. J. Geophys. Res. 112, 2206 (2007). doi:10.1029/2006JA012032

    Google Scholar 

  • Y.S. Yang, R.A. Wolf, R.W. Spiro, A.J. Dessler, Numerical simulation of plasma transport driven by the Io torus. Geophys. Res. Lett. 19, 957–960 (1992). doi:10.1029/92GL01031

    Article  ADS  Google Scholar 

  • Y.S. Yang, R.A. Wolf, R.W. Spiro, T.W. Hill, A.J. Dessler, Numerical simulation of torus-driven plasma transport in the Jovian magnetosphere. J. Geophys. Res. 99, 8755–8770 (1994). doi:10.1029/94JA00142

    Article  ADS  Google Scholar 

  • J.N. Yates, N. Achilleos, P. Guio, Influence of upstream solar wind on thermospheric flows at Jupiter. Planet. Space Sci. 61, 15–31 (2012). doi:10.1016/j.pss.2011.08.007

    Article  ADS  Google Scholar 

  • D.T. Young, J.J. Berthelier, M. Blanc, J.L. Burch, A.J. Coates, R. Goldstein, M. Grande, T.W. Hill, R.E. Johnson, V. Kelha, D.J. McComas, E.C. Sittler, K.R. Svenes, K. Szegö, P. Tanskanen, K. Ahola, D. Anderson, S. Bakshi, R.A. Baragiola, B.L. Barraclough, R.K. Black, S. Bolton, T. Booker, R. Bowman, P. Casey, F.J. Crary, D. Delapp, G. Dirks, N. Eaker, H. Funsten, J.D. Furman, J.T. Gosling, H. Hannula, C. Holmlund, H. Huomo, J.M. Illiano, P. Jensen, M.A. Johnson, D.R. Linder, T. Luntama, S. Maurice, K.P. McCabe, K. Mursula, B.T. Narheim, J.E. Nordholt, A. Preece, J. Rudzki, A. Ruitberg, K. Smith, S. Szalai, M.F. Thomsen, K. Viherkanto, J. Vilppola, T. Vollmer, T.E. Wahl, M. Wüest, T. Ylikorpi, C. Zinsmeyer, Cassini plasma spectrometer investigation. Space Sci. Rev. 114, 1–4 (2004). doi:10.1007/s11214-004-1406-4

    ADS  Google Scholar 

  • B. Zieger, K.C. Hansen, T.I. Gombosi, D.L. De Zeeuw, Periodic plasma escape from the mass-loaded Kronian magnetosphere. J. Geophys. Res. 115, 8208 (2010). doi:10.1029/2009JA014951

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Achilleos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Achilleos, N., André, N., Blanco-Cano, X., Brandt, P.C., Delamere, P.A., Winglee, R. (2016). Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions. In: Szego, K., et al. The Magnetodiscs and Aurorae of Giant Planets. Space Sciences Series of ISSI, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3395-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3395-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3394-5

  • Online ISBN: 978-1-4939-3395-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics