Skip to main content
Log in

Analysing the Effects of Apodizing Windows on Local Correlation Tracking Using Nirvana Simulations of Convection

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We employ different shapes of apodizing windows in the local correlation tracking (LCT) routine to retrieve horizontal velocities using numerical simulations of convection. LCT was applied on a time sequence of temperature maps generated by the Nirvana code with four different apodizing windows, Gaussian, Lorentzian, trapezoidal, and triangular, with varying widths. In terms of correlations (between the LCT-retrieved and simulated flow field), the triangular and the trapezoidal perform the best and worst, respectively. By segregating the intrinsic velocities in the simulations on the basis of their magnitudes, we find that for all windows a significantly higher correlation is obtained for the intermediate and high-velocity bins and only modest or weak values in the low-velocity bins. The differences between the LCT-retrieved and simulated flow fields were determined spatially. They show large residuals at or close to the boundary of granules. The extent to which the horizontal flow vectors retrieved by LCT are similar to the simulated values entirely depends on the width of the central peak of the apodizing window for a given σ. Even though LCT suffers from a lack of spatial content, as seen in simulations, its simplicity and speed could serve as a viable first-order tool to probe horizontal flows. This would be an ideal tool for large data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. Available as online material.

References

  • Barthol, P., Gandorfer, A., Solanki, S.K., Schüssler, M., Chares, B., Curdt, W., Deutsch, W., Feller, A., Germerott, D., Grauf, B., Heerlein, K., Hirzberger, J., Kolleck, M., Meller, R., Müller, R., Riethmüller, T.L., Tomasch, G., Knölker, M., Lites, B.W., Card, G., Elmore, D., Fox, J., Lecinski, A., Nelson, P., Summers, R., Watt, A., Martínez Pillet, V., Bonet, J.A., Schmidt, W., Berkefeld, T., Title, A.M., Domingo, V., Gasent Blesa, J.L., Del Toro Iniesta, J.C., López Jiménez, A., Álvarez-Herrero, A., Sabau-Graziati, L., Widani, C., Haberler, P., Härtel, K., Kampf, D., Levin, T., Pérez Grande, I., Sanz-Andrés, A., Schmidt, E.: 2011, The Sunrise mission. Solar Phys. 268, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Beeck, B., Collet, R., Steffen, M., Asplund, M., Cameron, R.H., Freytag, B., Hayek, W., Ludwig, H.-G., Schüssler, M.: 2012, Simulations of the solar near-surface layers with the CO5BOLD, MURaM, and Stagger codes. Astron. Astrophys. 539, A121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Rempel, M., Title, A.M., Schüssler, M.: 2010, Simulation of the formation of a solar active region. Astrophys. J. 720, 233. DOI . ADS .

    Article  ADS  Google Scholar 

  • Danilovic, S., Gandorfer, A., Lagg, A., Schüssler, M., Solanki, S.K., Vögler, A., Katsukawa, Y., Tsuneta, S.: 2008, The intensity contrast of solar granulation: Comparing hinode SP results with MHD simulations. Astron. Astrophys. 484, L17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Welsch, B.T.: 2008, FLCT: A fast, efficient method for performing local correlation tracking. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astronomical Society of the Pacific Conference Series 383, 373. ADS .

    Google Scholar 

  • Freytag, B., Steffen, M., Ludwig, H.-G., Wedemeyer-Böhm, S., Schaffenberger, W., Steiner, O.: 2012, Simulations of stellar convection with CO5BOLD. J. Comput. Phys. 231, 919. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Georgoulis, M.K., LaBonte, B.J.: 2006, Reconstruction of an inductive velocity field vector from Doppler motions and a pair of solar vector magnetograms. Astrophys. J. 636, 475. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hart, A.B.: 1956, Motions in the Sun at the photospheric level. VI. Large-scale motions in the equatorial region. Mon. Not. Roy. Astron. Soc. 116, 38. ADS .

    Article  ADS  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2002, Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577, 501. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lantz, S.R., Fan, Y.: 1999, Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. 121, 247. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leighton, R.B., Noyes, R.W., Simon, G.W.: 1962, Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474. DOI . ADS .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 2004, Inferring a photospheric velocity field from a sequence of vector magnetograms: The minimum energy fit. Astrophys. J. 612, 1181. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moll, R., Cameron, R.H., Schüssler, M.: 2011, Vortices in simulations of solar surface convection. Astron. Astrophys. 533, A126. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nisenson, P., van Ballegooijen, A.A., de Wijn, A.G., Sütterlin, P.: 2003, Motions of isolated G-band bright points in the solar photosphere. Astrophys. J. 587, 458. DOI . ADS .

    Article  ADS  Google Scholar 

  • November, L.J.: 1986, Measurement of geometric distortion in a turbulent atmosphere. Appl. Opt. 25, 392. DOI . ADS .

    Article  ADS  Google Scholar 

  • November, L.J., Simon, G.W.: 1988, Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427. DOI . ADS .

    Article  ADS  Google Scholar 

  • Potts, H.E., Barrett, R.K., Diver, D.A.: 2004, Balltracking: An highly efficient method for tracking flow fields. Astron. Astrophys. 424, 253. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rempel, M., Schüssler, M., Cameron, R.H., Knölker, M.: 2009, Penumbral structure and outflows in simulated sunspots. Science 325. DOI . ADS .

  • Rieutord, M., Roudier, T., Ludwig, H.-G., Nordlund, Å., Stein, R.: 2001, Are granules good tracers of solar surface velocity fields? Astron. Astrophys. 377, L14. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rüdiger, G., Küker, M., Schnerr, R.S.: 2012, Cross helicity at the solar surface by simulations and observations. Astron. Astrophys. 546, A23. DOI . ADS .

    Article  Google Scholar 

  • Schuck, P.W.: 2005, Local correlation tracking and the magnetic induction equation. Astrophys. J. Lett. 632, L53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J. 646, 1358. DOI . ADS .

    Article  ADS  Google Scholar 

  • Simon, G.W., Leighton, R.B.: 1964, Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J. 140, 1120. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stangalini, M.: 2014, Photospheric supergranular flows and magnetic flux emergence. Astron. Astrophys. 561, L6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Steiner, O., Franz, M., Bello González, N., Nutto, C., Rezaei, R., Martínez Pillet, V., Bonet Navarro, J.A., del Toro Iniesta, J.C., Domingo, V., Solanki, S.K., Knölker, M., Schmidt, W., Barthol, P., Gandorfer, A.: 2010, Detection of vortex tubes in solar granulation from observations with SUNRISE. Astrophys. J. Lett. 723, L180. DOI . ADS .

    Article  ADS  Google Scholar 

  • Strous, L.H.: 1995, Feature tracking: Deriving horizontal motion and more. In: Helioseismology, ESA SP-376, 213. ADS

    Google Scholar 

  • Verma, M., Steffen, M., Denker, C.: 2013, Evaluating local correlation tracking using CO5BOLD simulations of solar granulation. Astron. Astrophys. 555, A136. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., Linde, T.: 2005, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Fisher, G.H., Abbett, W.P., Regnier, S.: 2004, ILCT: Recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking. Astrophys. J. 610, 1148. DOI . ADS .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Abbett, W.P., De Rosa, M.L., Fisher, G.H., Georgoulis, M.K., Kusano, K., Longcope, D.W., Ravindra, B., Schuck, P.W.: 2007, Tests and comparisons of velocity-inversion techniques. Astrophys. J. 670, 1434. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yelles Chaouche, L., Moreno-Insertis, F., Bonet, J.A.: 2014, The power spectrum of solar convection flows from high-resolution observations and 3D simulations. Astron. Astrophys. 563, A93. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ziegler, U.: 2004, A central-constrained transport scheme for ideal magnetohydrodynamics. J. Comput. Phys. 196, 393. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

R.E. Louis is grateful for the financial assistance from the German Science Foundation (DFG) under grant DE 787/3-1 and the European Commission’s FP7 Capacities Programme under Grant Agreement number 312495. M.K. Georgoulis acknowledges support by the European Commission’s FP7 Marie Curie Programme under grant agreement no. PIRG07-GA-2010-268245. This work used the Nirvana code developed by Udo Ziegler at the Leibniz-Institut für Astrophysik Potsdam (AIP). We thank the referee for the useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan E. Louis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MOV 9.9 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louis, R.E., Ravindra, B., Georgoulis, M.K. et al. Analysing the Effects of Apodizing Windows on Local Correlation Tracking Using Nirvana Simulations of Convection. Sol Phys 290, 1135–1146 (2015). https://doi.org/10.1007/s11207-015-0659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0659-2

Keywords

Navigation