Skip to main content
Log in

Polarity reversals in dependence on the Prandtl number and density stratification

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Dependence of polarity reversals on the Prandtl number and density stratification using the MAG dynamo code was investigated. The magnetic field is dipole-dominated in the stable polarity state and during the reversals it is multipolar. Quadrupole and octupole components of magnetic fields are stronger at the Prandtl number equal to 0.2 than at the Prandtl number equal to 1. Polarity reversals occur at higher values of the Rayleigh number, while at its lower values the magnetic field does not undergo reversals. The situation is the same with the magnetic Prandtl number: polarity reversals occur at higher values of the magnetic Prandtl number, while at its lower values the magnetic field does not undergo reversals (neither if the magnetic field becomes weak in the polar regions nor if it is strong). During the 1000 simulated time units two reversals occur in the case of uniform stratification and at both investigated values of the Prandtl number, while in the case of non-uniform stratification and at both investigated values of the Prandtl number only one reversal occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert J., Aurnou J. and Wicht J., 2008. The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int., 172, 945–956.

    Article  Google Scholar 

  • Braginsky S., 1964. Magnetohydrodynamics of the Earth’s Core. Geomagn. Aeron., 4, 898–916 (Engl. Transl. 698–712).

    Google Scholar 

  • Brestenský J., Ševčík S. and Šimkanin J. 1998. Magnetoconvection in dependence on Roberts number. Stud. Geophys. Geod., 42, 280–288.

    Article  Google Scholar 

  • Busse F.H. and Simitev R., 2005. Convection in rotating spherical fluid shells and its dynamo states. In: Soward A.M., Jones C.A., Hughes D.W. and Weiss N.O. (Eds), Fluid Dynamics and Dynamos in Astrophysics and Geophysics. CRC Press, New York, 359–392.

    Google Scholar 

  • Busse F.H. and Simitev R., 2011. Remarks on some typical assumptions in dynamo theory. Geophys. Astrophys. Fluid Dyn., 105, 234–247.

    Article  Google Scholar 

  • Christensen U.R., Olson P. and Glatzmaier G.A., 1999. Numerical modelling of the geody- namo: a systematic parameter study. Geophys. J. Int., 138, 393–409.

    Article  Google Scholar 

  • Christensen U.R., Aubert J., Cardin P., Dormy E., Gibbons S., Glatzmaier G.A., Grote E., Honkura Y., Jones C., Kono M., Matsushima M., Sakuraba A., Takahashi F., Tilgner A., Wicht J. and Zhang K., 2001. A numerical dynamo benchmark. Phys. Earth Planet. Inter., 128, 25–34.

    Article  Google Scholar 

  • Christensen U.R. and Aubert J., 2006. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int., 166, 97–114.

    Article  Google Scholar 

  • Christensen U.R. and Wicht J., 2007. Numerical dynamo simulations. In: Kono M. (Ed.), Volume 8 — Core Dynamics, 245–282, Schubert, G. (Ed.-in-Chief), Treatise on Geophysics, Elsevier, Amsterdam, The Netherlands.

  • Christensen U.R., Aubert J. and Hulot G., 2010. Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett., 296, 487–496.

    Article  Google Scholar 

  • Christensen U.R., 2011. Geodynamo models: Tools for understanding properties of Earth’s magnetic field. Phys. Earth Planet. Inter., 187, 157–169.

    Article  Google Scholar 

  • Dharmaraj G. and Stanley S., 2012. Effect of inner core conductivity on planetary dynamo models. Phys. Earth Planet. Inter., 212–213, 1–9.

    Article  Google Scholar 

  • Fearn D.R., 2007. The Earth and its magnetic field. In: Soward A.M. and Dormy E. (Eds), Mathematical Aspects of Natural Dynamos. CRC Press, New York, 201–209.

    Chapter  Google Scholar 

  • Glatzmaier G.A. and Roberts P.H., 1995. A three-dimensional self-consistent computer simu- lation of geomagnetic field reversal. Nature, 337, 203–209.

    Article  Google Scholar 

  • Glatzmaier G.A., 2005. Planetary and stellar dynamos: challenges for next generation models. In: Soward A.M., Jones C.A., Hughes D.W. and Weiss N.O. (Eds), Fluid Dynamics and Dynamos in Astrophysics and Geophysics. CRC Press, New York, 331–357.

    Google Scholar 

  • Glatzmaier G.A. and Coe, R.S., 2007. Magnetic polarity reversals in the core. In: Kono M. (Ed.), Volume 8- Core Dynamics, 283–297, Schubert, G. (Ed.-in-Chief), Treatise on Geophysics, Elsevier, Amsterdam, The Netherlands.

  • Hollerbach R. and Jones C.A., 2000. Influence of the Earth’s inner-core on geomagnetic fluctuations and reversals. Nature, 365, 541–543.

    Article  Google Scholar 

  • Jones C.A., 2000. Convection-driven geodynamo models. Phil. Trans. R. Soc. London A, 358, 873–897.

    Article  Google Scholar 

  • Kutzner C. and Christensen U.R., 2002. From stable dipolar towards reversing numerical dynamos. Phys. Earth Planet. Inter., 131, 29–45.

    Article  Google Scholar 

  • Nakagawa T., 2011. Effect of a stably stratified layer near the outer boundary in numeri- cal simulations of a magnetohydrodynamic dynamo in a rotating spherical shell and its implications for Earth’s core. Phys. Earth Planet. Inter., 187, 342–352.

    Article  Google Scholar 

  • Olson P. and Glatzmaier, G.A., 1995. Magnetoconvection in a rotating spherical shell: struc- ture of flow in the outer core. Phys. Earth Planet Inter., 92, 109–118.

    Article  Google Scholar 

  • Olson P. and Glatzmaier G.A., 1996. Magnetoconvection and thermal coupling of the Earth’s core and mantle. Phil. Trans. R. Soc. London A, 354, 1413–1424.

    Article  Google Scholar 

  • Olson P., Christensen U.R. and Glatzmaier G.A., 1999. Numerical modeling of the geodynamo: mechanisms of field generation and equilibration. J. Geophys. Res., 104(B5), 10383–10404.

    Article  Google Scholar 

  • Olson P. and Glatzmaier G.A., 2005. Probing the geodynamo. Sci. Am., 15(2), 29–35.

    Google Scholar 

  • Olson P., Glatzmaier G.A. and Coe R.S., 2011. Complex polarity reversals in a geodynamo model. Earth Planet. Sci. Lett., 304, 168–179.

    Article  Google Scholar 

  • Olson P., Deguen R., Hinnov L.A. and Zhong S., 2013. Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic. Phys. Earth Planet. Inter., 214, 87–103.

    Article  Google Scholar 

  • Roberts P.H. and Glatzmaier G.A., 2000. Geodynamo theory and simulations. Rev. Mod. Phys., 72 (4), 1081–1123.

    Article  Google Scholar 

  • Sakuraba A. and Roberts P.H., 2009. Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci., 2, 802–805.

    Article  Google Scholar 

  • Simitev R. and Busse F.H., 2005. Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J. Fluid Mech., 532, 365–388.

    Article  Google Scholar 

  • Šimkanin J., Brestenský J. and Ševčík, S., 2003. Problem of the rotating magnetoconvection in variously stratified fluid layer revisited. Stud. Geophys. Geod., 47, 827–845.

    Article  Google Scholar 

  • Šimkanin J., Brestenský J. and Ševčík, S., 2006. On hydromagnetic instabilities and the mean electromotive force in a non-uniformly stratified Earth’s core affected by viscosity. Stud. Geophys. Geod., 50, 645–661.

    Article  Google Scholar 

  • Šimkanin J., Hejda P. and Saxonbergová-Jankovičová D., 2010. Convection in rotating non- uniformly stratified spherical fluid shells in dependence on Ekman and Prandtl numbers. Phys. Earth Planet. Inter., 178, 39–47.

    Article  Google Scholar 

  • Šimkanin J., Hejda P. and Saxonbergová D., 2011. Hydromagnetic dynamos in rotating non- uniformly stratified spherical fluid shells in dependence on the Rayleigh number. Phys. Earth Planet. Inter., 185, 100–106.

    Article  Google Scholar 

  • Šimkanin J. and Hejda P., 2011. Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification. Geophys. J. Int., 185, 637–646.

    Article  Google Scholar 

  • Šimkanin J. and Hejda P., 2013. Magnetic fields generated by hydromagnetic dynamos at the low Prandtl number in dependence on the Ekman and magnetic Prandtl numbers. Phys. Earth Planet. Inter., 217, 22–30.

    Article  Google Scholar 

  • Sreenivasan B. and Jones C.A., 2006a. The role of inertia in the evolution of spherical dynamos, Geophys. J. Int., 164, 467–476.

    Article  Google Scholar 

  • Sreenivasan B. and Jones C.A., 2006b. Azimuthal winds, convection and dynamo action in the polar regions of planetary cores. Geophys. Astrophys. Fluid Dyn., 100, 319–339.

    Article  Google Scholar 

  • Takahashi F., Matsushima M. and Honkura Y., 2008. Scale variability in convection-driven MHD dynamos at low Ekman number. Phys. Earth Planet. Inter., 167, 168–178.

    Article  Google Scholar 

  • Takahashi F. and Shimizu H., 2012. A detailed analysis of a dynamo mechanism in a rapidly rotating spherical shell. J. Fluid Mech., 701, 228–250.

    Article  Google Scholar 

  • Wicht J., 2002. Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter., 132, 281–302.

    Article  Google Scholar 

  • Wicht J. and Tilgner A., 2010. Theory and modeling of planetary dynamos. Space Sci. Rev., 152, 501–542.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Šimkanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šimkanin, J. Polarity reversals in dependence on the Prandtl number and density stratification. Stud Geophys Geod 59, 137–158 (2015). https://doi.org/10.1007/s11200-014-0724-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0724-6

Keywords

Navigation