Skip to main content
Log in

Magnetic Field Suppression of Turbulence during Reversals

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

A magnetic field suppresses hydrodynamic turbulence. This leads to a weakening of a large-scale magnetic field generation by small-scale flows and, simultaneously, to a decrease in ohmic dissipation. It is shown that a decrease in dissipation is important for the process of changing the polarity of the geomagnetic dipole: both the frequency of reversals increases and their fine structure changes. In particular, the time for the decrease in the dipole strength becomes comparable with the time for its recovery after the reversal. This is consistent with the results of 3D modeling and most paleomagnetic observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. J. A. Tarduno, R. D. Cottrell, M. K. Watkeys, A. Hofmann, P. V. Doubrovine, E. E. Mamajek, D. Liu, D. G. Sibeck, L. P. Neukirch, and Y. Usui, Science (Washington, DC, U. S.) 327 (5970), 1238 (2010).

    Article  ADS  Google Scholar 

  2. J. G. Ogg, ‘‘Geomagnetic polarity time scale,’’ in Geologic Time Scale, Ed. by F. M. Gradstein, J. G. Ogg, M. D. Schmitz, and G. M. Ogg (Elsevier, Amsterdam, 2020), p. 159–192.

    Google Scholar 

  3. M. Yu. Reshetnyak and V. E. Pavlov, Geomagn. Aeron. 56, 110 (2016).

    Article  ADS  Google Scholar 

  4. P. H. Roberts and E. M. King, Rep. Prog. Phys. 76, 096801 (2013).

    Article  ADS  Google Scholar 

  5. J.-P. Valet, L. Meynadier, and Y. Guyodo, Nature (London, U.K.) 435 (7043), 802 (2005).

    Article  ADS  Google Scholar 

  6. M. Yu. Reshetnyak, Geomagn. Aeron. 57, 369 (2017).

    Article  ADS  Google Scholar 

  7. L. B. Ziegler and C. G. Constable, Earth Planet. Sci. Lett. 312, 300 (2011).

    Article  ADS  Google Scholar 

  8. F. Stefani, G. Gerbeth, and U. Günther, Magnetohydrodynamics 42, 123 (2006).

    Article  ADS  Google Scholar 

  9. M. Yu. Reshetnyak, Solar Syst. Res. 53, 254 (2019).

    Article  ADS  Google Scholar 

  10. E. V. Yushkov and D. D. Sokoloff, Izv. Phys. Solid Earth 54, 652 (2018).

    Article  ADS  Google Scholar 

  11. F. Krauze and K.-H. Rädler, Mean Field Electrodynamics and Dynamo Theory (Pergamon, Oxford, 1980).

    Google Scholar 

  12. Ya. B. Zel’dovich, A. A. Ruzmaikin, and D. D. Sokolov, Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983).

    Google Scholar 

  13. M. Yu. Reshetnyak, Izv. Phys. Solid Earth 53, 581 (2017).

    Article  ADS  Google Scholar 

  14. P. Hoyng, Astron. Astrophys. 272, 321 (1993).

    ADS  MathSciNet  Google Scholar 

  15. D. Moss, L. L. Kitchatinov, and D. Sokoloff, Astron. Astrophys. 550, L9 (2013).

    Article  ADS  Google Scholar 

  16. M. Yu. Reshetnyak, Geomagn. Aeron. 61, 266 (2021).

    Article  ADS  Google Scholar 

  17. J. Wicht, Phys. Earth Planet. Inter. 132, 281 (2002).

    Article  ADS  Google Scholar 

  18. T. Gastine, J. Wicht, and J. M. Aurnou, Icarus 225, 156 (2013).

    Article  ADS  Google Scholar 

  19. F.-H. Busse, J. Fluid Mech. 44, 441 (1970).

    Article  ADS  Google Scholar 

  20. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Courier, Mineola, NY, 1970).

    MATH  Google Scholar 

  21. G. Rüdiger and R. Hollerbach, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory (Wiley, Chichester, 2006).

    Google Scholar 

  22. C. A. Jones and P.-H. Roberts, J. Fluid Mech. 404, 3113 (2000).

    Article  Google Scholar 

  23. S. M. Tobias, Astrophys. J. 467, 870 (1996).

    Article  ADS  Google Scholar 

  24. M. Yu. Reshetnyak and D. D. Sokoloff, Izv. Phys. Solid Earth 39, 744 (2003).

    Google Scholar 

  25. K. Zhang and D. Gubbins, Geophys. J. Int. 140 (1), F1 (2000).

    Article  Google Scholar 

Download references

Funding

The work is carried out within the State Assignment of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Reshetnyak.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetnyak, M.Y. Magnetic Field Suppression of Turbulence during Reversals. Moscow Univ. Phys. 77, 535–541 (2022). https://doi.org/10.3103/S0027134922030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134922030092

Keywords:

Navigation