Skip to main content
Log in

Moho depth uncertainties in the Vening-Meinesz Moritz inverse problem of isostasy

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We formulate an error propagation model based on solving the Vening Meinesz-Moritz (VMM) inverse problem of isostasy. The system of observation equations in the VMM model defines the relation between the isostatic gravity data and the Moho depth by means of a second-order Fredholm integral equation of the first kind. The corresponding error model (derived in a spectral domain) functionally relates the Moho depth errors with the commission errors of used gravity and topographic/bathymetric models. The error model also incorporates the non-isostatic bias which describes the disagreement, mainly of systematic nature, between the isostatic and seismic models. The error analysis is conducted at the study area of the Tibetan Plateau and Himalayas with the world largest crustal thickness. The Moho depth uncertainties due to errors of the currently available global gravity and topographic models are estimated to be typically up to 1–2 km, provided that the GOCE gravity gradient observables improved the medium-wavelength gravity spectra. The errors due to disregarding sedimentary basins can locally exceed ∼2 km. The largest errors (which cause a systematic bias between isostatic and seismic models) are attributed to unmodeled mantle heterogeneities (including the core-mantle boundary) and other geophysical processes. These errors are mostly less than 2 km under significant orogens (Himalayas, Ural), but can reach up to ∼10 km under the oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airy G.B., 1855. On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Trans. R. Soc. London B, 145.

  • Allègre C.J., Courtillot V., Tapponier P., Hirn A., Mattauer M., Coulon C., Jaeger J.J., Achache J., Schärer U., Marcoux J., Burg J.P., Girardeau J., Armijo R., Garie C., Göpel C., Li T., Xiao X., Chang C. and Li G., 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307, 17–22.

    Article  Google Scholar 

  • Bagherbandi M., 2012. A comparison of three gravity inversion methods for crustal thickness modelling in Tibet plateau. J. Asian Earth Sci., 43, 89–97, DOI: 10.1016/j.jseaes.2011.08.013.

    Article  Google Scholar 

  • Bagherbandi M. and Sjöberg L.E., 2012. Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Phys. Earth Planet. Inter., 200–201, 37–44.

    Article  Google Scholar 

  • Bagherbandi M., Tenzer R., Sjöberg L.E. and Novák P., 2013. Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. J. Geodyn., 66, 25–37.

    Article  Google Scholar 

  • Bassin C., Laske G. and Masters T.G., 2000. The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 81, F897.

    Google Scholar 

  • Braitenberg C., Zadro M., Fang J., Wang Y. and Hsu H.T., 2000a. Gravity inversion in Quinghai-Tibet plateau. Phys. Chem. Earth, 25, 381–386.

    Article  Google Scholar 

  • Braitenberg C., Zadro M., Fang J., Wang Y. and Hsu H.T., 2000b. The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. J. Geodyn., 30, 489–505.

    Article  Google Scholar 

  • Braitenberg C., Wienecke S. and Wang Y., 2006. Basement structures from satellite-derived gravity field: south China Sea ridge. J. Geophys. Res., 111, B05407.

    Google Scholar 

  • Caporali A., 1995. Gravity anomalies and the flexure of the lithosphere in the Karakoram, Pakistan. J. Geophys. Res., 100, 15075–15085.

    Article  Google Scholar 

  • Caporali A., 1998. Gravimetric constraints on the rheology of the Indian and Tarim plates in the Karakoram continent collision zone. J. Asian Earth Sci., 16, 313–321.

    Article  Google Scholar 

  • Caporali A., 2000. Buckling of the lithosphere in western Himalaya; constraints from gravity and topography data. J. Geophys. Res., 105, 3103–3113.

    Article  Google Scholar 

  • Čadek O. and Martinec Z., 1991. Spherical harmonic expansion of the earth’s crustal thickness up to degree and order 30. Stud. Geophys. Geod., 35, 151–165.

    Article  Google Scholar 

  • Dziewonski A.M. and Anderson D.L., 1981. Preliminary Reference Earth Model. Phys. Earth Planet. Inter., 25, 297–356.

    Article  Google Scholar 

  • Gao R., Lu Z., Li Q., Guan Y., Zhang J., He R. and Huang L., 2005. Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau. Episode, 28, 263–273.

    Google Scholar 

  • Gladkikh V. and Tenzer R., 2011. A mathematical model of the global ocean saltwater density distribution. Pure Appl. Geophys., 169, 249–257.

    Article  Google Scholar 

  • Grad M., Tiira T. and ESC Working Group, 2009. The Moho depth map of the European Plate. Geophys. J. Int., 176, 279–292.

    Article  Google Scholar 

  • Hayford J.F., 1909. The Figure of the Earth and Isostasy from Measurements in the United States. U.S. Coast and Geodetic Survey, Govt. Print. Off., Washington, D.C.

    Google Scholar 

  • Hayford J.F. and Bowie W., 1912. The Effect of Topography and Isostatic Compensation upon the Intensity of Gravity. U.S. Coast and Geodetic Survey, Govt. Print. Off., Washington, D.C.

    Google Scholar 

  • Heiskanen W.A. and Vening Meinesz F.A., 1958. Earth and its Gravity Field. McGraw-Hill Book Company Inc., New York, NY.

    Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. Freeman W.H., New York, N.Y.

    Google Scholar 

  • Hirn A., Lepine J.C., Jobert T.G., Sapin M., Wittlinger G., Xu Z.X., Gao E.Y., Wang X.J., Teng J.W., Xiong S.B., Pandey M.R. and Talte J.M., 1984. Crust structure and variability of the Himalayan border of Tibet. Nature, 307, 23–25.

    Article  Google Scholar 

  • Kaban M.K., Schwintzer P. and Tikhotsky S.A., 1999. Global isostatic gravity model of the Earth. Geophys. J. Int., 136, 519–536.

    Article  Google Scholar 

  • Kaban M.K., Schwintzer P., Artemieva I.M. and Mooney W.D., 2003. Density of the continental roots: compositional and thermal contributions. Earth Planet. Sci. Lett., 209, 53–69.

    Article  Google Scholar 

  • Kaban M.K., Schwintzer P. and Reigber Ch., 2004. A new isostatic model of the lithosphere and gravity field. J. Geodesy, 78, 368–385.

    Article  Google Scholar 

  • Kind R., Ni J., Zhao W., Wu J., Yuan X., Zhao L., Sandvol E., Reeses C., Nabelek J. and Hearn T., 1996. Evidence from earthquake data for a partially molten crustal layer in Southern Tibet. Science, 274, 1692–1694.

    Article  Google Scholar 

  • Kind R., Yuan X., Saul J., Nelson D., Sobolev S.V., Mechie J., Zhao W., Kosarev G., Ni J., Achauer U. and Jiang M., 2002. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science, 298, 1219–1221.

    Article  Google Scholar 

  • Lyon-Caen H. and Molnar P., 1983. Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J. Geophys. Res., 88, 8171–8191.

    Article  Google Scholar 

  • Lyon-Caen H. and Molnar P., 1984. Gravity anomalies and the structure of western Tibet and the southern Tarim basin. Geophys. Res. Lett., 11, 1251–1254.

    Article  Google Scholar 

  • Mayer-Guerr T., Rieser D., Höck E., Brockmann J.M., Schuh W.-D., Krasbutter I., Kusche J., Maier A., Krauss S., Hausleitner W., Baur O., Jäggi A., Meyer U., Prange L., Pail R., Fecher T. and Gruber T., 2012. The new combined satellite only model GOCO03s. http://icgem.gfz-potsdam.de/ICGEM/modelstab.html.

    Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. Abacus Press, Tunbridge Wells, U.K.

    Google Scholar 

  • Moritz H., 1990. The Figure of the Earth. Wichmann H., Karlsruhe, Germany.

    Google Scholar 

  • Nelson K.D., Zhao W., Brown L.D., Kuo J., Che J., Liu X., Klemperer S.L., Makovsky Y., Meissner R., Mechie J., Kind R., Wenzel F., Ni J. and Nabelek J., 1996. Partially molten middle crust beneath southern Tibet Synthesis of Project INDEPTH results. Science, 274, 1684–1688.

    Article  Google Scholar 

  • Pavlis N.K., Factor J.K. and Holmes S.A., 2007. Terrain-related gravimetric quantities computed for the next EGM. In: Kiliçoglu A. and Forsberg R. (Eds.), Gravity Field of the Earth. Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS). Harita Dergisi, Special Issue No. 18, General Command of Mapping, Ankara, Turkey.

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406.

    Google Scholar 

  • Pratt J.H., 1855. On the attraction of the Himalaya Mountains and of the elevated regions beyond upon the plumb-line in India. Trans. R. Soc. London B, 145.

  • Rai S.S., Priestley K., Gaur V.K., Mitra S., Singh M.P. and Searle M., 2006. Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys. Res. Lett., 33, L15308.

    Article  Google Scholar 

  • Rodriguez E., Morris C.S., Belz J.E., Chapin E.C., Martin J.M., Daffer W. and Hensley S., 2005. An Assessment of the SRTM Topographic Products. Technical Report D31639, Jet Propulsion Laboratory, Pasadena, California, 143 pp.

    Google Scholar 

  • Sampietro D., Reguzzoni M. and Braitenberg C., 2014. The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. In: Rizos C. and Willis P. (Eds.), Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia 139, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Schulte-Pelkum V., Monsalve G., Sheehan A., Pandey M.R., Sapkota S. and Bilham R., 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435, 1222–1225.

    Article  Google Scholar 

  • Shin Y.H., Xu H., Braitenberg C., Fang J. and Wang Y., 2007. Moho undulations beneath Tibet from GRACE-integrated gravity data. Geophys. J. Inter., 170, 971–985.

    Article  Google Scholar 

  • Shin Y.H., Shum C.-K., Braitenberg C., Lee S.M., Xu H., Choi K.S., Baek J.H. and Park J.U., 2009. Three dimensional fold structure of the Tibetan Moho from GRACE gravity data. Geophys. Res. Lett., 36, L01302.

    Google Scholar 

  • Sjöberg L.E., 2009. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys. J. Int., 179, 1527–1536.

    Article  Google Scholar 

  • Sjöberg L.E. and Bagherbandi M., 2011. A method of estimating the Moho density contrast with a tentative application by EGM2008 and CRUST2.0. Acta Geophysica, 59, 502–525.

    Article  Google Scholar 

  • Teng J.W., Yin Z.X., Xu Z.X., Wang X.T. and Lu D.Y., 1983. Structure of the crust and upper mantle pattern and velocity distributional characteristics in the Northern Himalayan mountain region. Acta Geophysica Sincia, 26, 525–540.

    Google Scholar 

  • Tenzer R. and Bagherbandi M., 2012. Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. Int. J. Geosci., 3(5), 918–929; DOI: 10.4236/ijg.2012.325094.

    Article  Google Scholar 

  • Tenzer R., Hamayun and Vajda P., 2009. Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J. Geophys. Res., 114, B05408.

    Google Scholar 

  • Tenzer R., Abdalla A., Vajda P., Hamayun, 2010. The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast, Contributions to Geophysics and Geodesy, 40,3, 207–223.

    Article  Google Scholar 

  • Tenzer R., Novák P. and Gladkikh V., 2011. On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Stud. Geophys. Geod., 55, 609–626.

    Article  Google Scholar 

  • Tenzer R., Gladkikh V., Vajda P. and Novák P., 2012a. Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv. Geophys., 33, 817–839.

    Article  Google Scholar 

  • Tenzer R., Novák P. and Gladkikh V., 2012b. The bathymetric stripping corrections to gravity field quantities for a depth-dependant model of the seawater density. Marine Geodesy, 35, 198–220.

    Article  Google Scholar 

  • Tenzer R., Novák P., Vajda P., Gladkikh V. and Hamayun, 2012c. Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput. Geosci., 16, 193–207.

    Article  Google Scholar 

  • Tenzer R., Bagherbandi M., Hwang Ch. and Chang E.T.Y., 2014. Moho interface modeling beneath Himalayas, Tibet and central Siberia using GOCO02S and DTM2006.0. Terr. Atmos. Ocean. Sci., (in print).

    Google Scholar 

  • Tseng T.L., Chen W.P. and Nowack R.L., 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys. Res. Lett., 36, L24304, DOI: 10.1029/2009GL040457.

    Article  Google Scholar 

  • Vening Meinesz F.A., 1931. Une nouvelle méthode pour la réduction isostatique régionale de l’intensité de la pesanteur. Bulletin Géodésique, 29, 33–51 (in French).

    Article  Google Scholar 

  • Watts A.B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge, U.K., 458 pp.

    Google Scholar 

  • Wienecke S., Braitenberg C. and Götze H.-J., 2007. A new analytical solution estimating the flexural rigidity in the Central Andes. Geophys. J. Int., 169, 789–794.

    Article  Google Scholar 

  • Wittlinger G., Vergne J., Tapponnier P., Farra V., Poupinet G., Jiang M., Su H., Herquel G. and Paul A., 2004. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet. Sci. Lett., 221, 117–130.

    Article  Google Scholar 

  • Wu G., Xiao X. and Li T., 1991. Yadong to Golmud Transect Qinghai-Tibet Plateau, China. Global Geoscience Transects Series 3, AGU, Washington, D.C.

    Google Scholar 

  • Xiong S.B., Teng J.W. and Yin Z.X., 1985: Research on the fine crustal structure of the northern Qilian-Hexi Corridor by deep seismic reflection. Chinese J. Geophys., 38, 29–35.

    Google Scholar 

  • Xu Z.Q., Jiang M., Yang J.S., Xue G.Q., Su H.P., Li H.B., Cui J.W., Wu C.L. and Liang F.H., 2004. Mantle structure of Qinghai-Tibet plateau: Mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Sci. Front., 11, 329–343.

    Google Scholar 

  • Zeng R.S., Ding Z.F. and Wu Q.J., 1994. A review of the lithospheric structure in Tibetan plateau and constraints for dynamics. Acta Geophys. Sinica, 37, 99–116.

    Google Scholar 

  • Zeng R.S., Teng J.W., Li Y.K., Klemperer S. and Yang L.Q., 2002. Crustal velocity structure and eastward escaping of crustal material in the southern Tibet. Science in China, 32, 793–798.

    Google Scholar 

  • Zhang Z.J., Li Y.K., Wang G.J., Teng J.W., Klemperer S., Li J.W., Gan J.Y. and Chen Y., 2001. E-W Crustal structure under the northern Tibet revealed by wide-angle seismic profiles. Science in China D, 31, 881–888.

    Google Scholar 

  • Zhao W.-J., Nelson K.D. and Project INDEPTH Team, 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366, 557–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagherbandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagherbandi, M., Tenzer, R. & Sjöberg, L.E. Moho depth uncertainties in the Vening-Meinesz Moritz inverse problem of isostasy. Stud Geophys Geod 58, 227–248 (2014). https://doi.org/10.1007/s11200-013-1258-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-1258-z

Keywords

Navigation