Skip to main content

Advertisement

Log in

On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

In geophysical studies investigating the lithosphere structure, the gravitational field generated by the ocean density contrast (i.e., bathymetry-generated gravitational field) represents a significant amount of the signal to be modelled and subsequently removed from the Earth’s gravity field. The ocean density contrast is typically calculated as the difference between the mean density values of the Earth’s crust and seawater. The approximation of the actual seawater density distribution by its mean value yields relative errors up to about 2% in computed quantities of the gravitational field. To reduce these errors, a more realistic model of the seawater density distribution is utilized based on the analysis of existing oceanographic data of salinity, temperature, and pressure (depth). We study the accuracy of the bathymetry-generated gravitational field quantities formulated for a depth-dependent model of the seawater density distribution. This density distribution approximates the seawater density variations due to an increasing pressure with depth, whereas smaller lateral density variations caused by salinity, temperature, and other oceanographic factors are not taken into consideration. The error analysis reveals that the approximation of the seawater density by the depth-dependent density model reduces the maximum errors to less than 0.6%. The corresponding depth-averaged errors are below 0.1%. The depth-dependent seawater density model is further facilitated in expressions for computing the bathymetry-generated gravitational field quantities by means of the spherical bathymetric (ocean bottom depth) functions. The numerical realization reveals large differences in the results obtained with and without consideration of the depth-dependent seawater density distribution. The maxima of absolute differences reach 201 m2/s2 and 16.5 mGal in computed values of the potential and attraction, respectively. The application of the depth-dependent seawater density model thus significantly improves the accuracy in the forward modelling of the bathymetric gravitational field quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov J.I., Seidov D., Boyer T.P., Locarnini R.A., Mishonov A.V. and Garcia H.E., 2010. World Ocean Atlas 2009, Volume 2, Salinity. In: Levitus S. (Ed.), NOAA Atlas NESDIS, 69. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Chen C.-T. and Millero F.J., 1978. The equation of state of seawater determined from sound speeds. J. Marine Res., 36, 657–691.

    Google Scholar 

  • Garcia H.E., Locarnini R.A., Boyer T.P. and Antonov J.I., 2010a. World Ocean Atlas 2009, Volume 3, Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. In: Levitus S. (Ed.), NOAA Atlas NESDIS, 70. U.S. Government Printing Office, Washington, D.C., 344 pp.

    Google Scholar 

  • Garcia H.E., Locarnini R.A., Boyer T.P. and Antonov J.I., 2010b. World Ocean Atlas 2009, Volume 4, Nutrients (Phosphate, Nitrate, Silicate). In: Levitus S. (Ed.), NOAA Atlas NESDIS, 71. U.S. Government Printing Office, Washington, D.C., 398 pp.

    Google Scholar 

  • Garrison T., 2001. Essentials of Oceanography. Pacific Grove, C.A., Brooks Cole.

    Google Scholar 

  • Gladkikh V. and Tenzer R., 2011. A mathematical model of the global ocean saltwater density distribution. Pure Appl. Geophys. (in print, DOI: 10.1007/s00024-011-0275-5).

  • Heiskanen W.H. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Hinze W.J., 2003. Bouguer reduction density, why 2.67? Geophysics, 68, 1559–1560.

    Article  Google Scholar 

  • Hobson E.W., 1931. The Theory of Spherical and Ellipsoidal Harmonics. Cambridge Univ. Press, republished in 1955 by Chelsea Publishing Comp., New York.

  • Johnson D.R., Garcia H.E. and Boyer T.P., 2009. World Ocean Database 2009 Tutorial. In: Levitus S. (Ed.), NODC Internal Report, 21. NOAA Printing Office, Silver Spring, M.D.

    Google Scholar 

  • Kaban M.K., Schwintzer P. and Tikhotsky S.A., 1999. Global isostatic gravity model of the Earth. Geophys. J. Int., 136, 519–536.

    Article  Google Scholar 

  • Kaban M.K. and Schwintzer P., 2001. Oceanic upper mantle structure from experimental scaling of Vs. and density at different depths. Geophys. J. Int., 147, 199–214.

    Article  Google Scholar 

  • Kaban M.K., Schwintzer P., Artemieva I.M. and Mooney W.D., 2003. Density of the continental roots: compositional and thermal contributions. Earth Planet. Sci. Lett., 209, 53–69.

    Article  Google Scholar 

  • Kaban M.K., Schwintzer P. and Reigber Ch., 2004. A new isostatic model of the lithosphere and gravity field. J. Geodesy, 78, 368–385.

    Article  Google Scholar 

  • Locarnini R.A., Mishonov A.V., Antonov J.I., Boyer T.P. and Garcia H.E., 2010. World Ocean Atlas 2009, Volume 1: Temperature. In: Levitus S. (Ed.), NOAA Atlas NESDIS, 69. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Mikuška J., Pašteka R. and Marušiak I., 2006. Estimation of distant relief effect in gravimetry. Geophysics, 71, J59–J69.

    Article  Google Scholar 

  • Millero F.J. and Emmet R.T., 1976. The effect of dissolved air and natural isotopic distributions on the density of water. J. Mar. Res., 34, 15–24.

    Google Scholar 

  • Millero F.J., Gonzalez A. and Ward G.K., 1976. The density of seawater solutions at one atmosphere as a function of temperature and salinity. J. Mar. Res., 34, 61–93.

    Google Scholar 

  • Millero F.J. and Kremling K., 1976. The densities of Baltic Sea waters. Deep-Sea Res., 23, 1129–1138.

    Google Scholar 

  • Millero F.J., Chetirkin P.V. and Culkin F., 1977. The relative conductivity and density of standard seawaters. Deep-Sea Res., 24, 315–321.

    Article  Google Scholar 

  • Millero F.J., Forsht D., Means D., Gieskes J. and Kenyon K., 1978. The density of North Pacific Ocean waters. J. Geophys. Res., 83, 2359–2364.

    Article  Google Scholar 

  • Millero F.J., Chen C.-T., Bradshaw A. and Schleicher K., 1980. A new high pressure equation of state for seawater. Deep-Sea Res. Part A-Oceanogr. Res. Pap., 27, 255–264.

    Article  Google Scholar 

  • Millero F.J. and Poisson A., 1981a. International one-atmosphere equation of state of seawater. Deep-Sea Res. Part A-Oceanogr. Res. Pap., 28, 625–629.

    Article  Google Scholar 

  • Millero F.J. and Poisson A., 1981b. Density of seawater and the new international equation of state of seawater 1980. IMS Newsletter, Number 30, Special Issue 1981–1982, UNESCO, Paris, France.

    Google Scholar 

  • Millero F.J., 2000. Effects of changes in the composition of seawater on the density-salinity relationship. Deep-Sea Res. Part I-Oceanogr. Res. Pap., 47, 1583–1590.

    Article  Google Scholar 

  • Millero F.J., Feistel R., Wright D.G., McDougall T.J., 2008. Deep-Sea Res. Part I-Oceanogr. Res. Pap., 55, 50–72.

    Article  Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. Abacus Press, Tunbridge Wells.

    Google Scholar 

  • Novák P., 2010. High resolution constituents of the Earth gravitational field. Surv. Geophys., 31, 1–21.

    Article  Google Scholar 

  • Novák, P. 2010. Direct modeling of the gravitational field using harmonic series. Acta Geodyn. Geomat., 157, 35–47.

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. http://www.massentransporte.de/fileadmin/2kolloquium_muc/2008-10-08/Bosch/EGM2008.pdf.

  • Rummel R., Rapp R.H., Suenkel H. and Tscherning C.C., 1988: Comparison of Global Topographic/Isostatic Models to the Earth’s Observed Gravitational Field. Report 388. The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Saunders P.M. and Fofonoff N.P., 1976. Conversion of pressure to depth in the ocean. Deep-Sea Res., 23, 109–111.

    Google Scholar 

  • Sun W. and Sjöberg L.E., 2001. Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections. J. Geodesy, 74, 627–636.

    Article  Google Scholar 

  • Tenzer R., Hamayun and Vajda P., 2008a. Global secondary indirect effects of topography, bathymetry, ice and sediments. Contrib. Geophys. Geod., 38, 209–216.

    Google Scholar 

  • Tenzer R., Hamayun and Vajda P., 2008b. Global map of the gravity anomaly corrected for complete effects of the topography, and of density contrasts of global ocean, ice, and sediments. Contrib. Geophys. Geod., 38, 357–370.

    Google Scholar 

  • Tenzer R., Hamayun and Vajda P., 2009a. Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J. Geophys. Res., 114, B05408.

    Article  Google Scholar 

  • Tenzer R., Hamayun and Vajda P., 2009b. A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST 2.0 Moho boundary. Contrib. Geophys. Geod., 39, 133–147.

    Article  Google Scholar 

  • Tenzer R., Vajda P. and Hamayun, 2010. A mathematical model of the bathymetry-generated external gravitational field. Contrib. Geophys. Geod., 40, 31–44.

    Article  Google Scholar 

  • Vajda P., Ellmann A., Meurers B., Vaníček P., Novák P. and Tenzer R., 2008. Global ellipsoidreferenced topographic, bathymetric and stripping corrections to gravity disturbance. Stud. Geophys. Geod., 52, 19–34.

    Article  Google Scholar 

  • Vaníček P., Najafi M., Martinec Z., Harrie L. and Sjöberg L.E., 1995. Higher-degree reference field in the generalised Stokes-Helmert scheme for geoid computation. J. Geodesy, 70, 176–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenzer, R., Novák, P. & Gladkikh, V. On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Stud Geophys Geod 55, 609–626 (2011). https://doi.org/10.1007/s11200-010-0074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0074-y

Keywords

Navigation