Skip to main content
Log in

Magnetomineralogy of the cordierite gneiss from the magnetic anomaly at Humpolec, Bohemian Moldanubicum (Czech Republic)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Magnetic properties as well as the magnetomineralogy were investigated in rocks underlying a 7 km long aeromagnetic anomaly situated in the Moldanubian crystalline unit of the Bohemian Massif. The anomaly is caused by highly magnetic cordierite gneiss forming a stripe of NE — SW direction east of the town of Humpolec, eastern Bohemia. Magnetic susceptibility and its anisotropy (AMS), natural remanent magnetization, field and temperature variations of susceptibility were measured. Optical study of thin sections, electron microprobe and Mössbauer studies were also used to reveal the carrier of the high susceptibility and the high NRM. There appear to be two major generations of Fe-Ti oxides: older hematite with ilmenite exsolutions (Ti-hematite) which is the dominant remanence phase, and younger magnetite, the dominant susceptibility phase, usually associated with rutile. This indicates a reaction Hematite + Ilmenite → Magnetite + + Rutile; the trace elements in magnetite, as well as texture and morphology of the oxide grains support this assertion. An additional minor portion of maghemite is revealed by Mössbauer and thermomagnetic results. The Ti-hematite belongs to the oldest mineral assemblage in the rock, despite its anhedral morphology. Inclusions in Ti-hematite, among which corundum and abundant paragonite occur, record a strongly peraluminous and probably disequilibrium association during the crystallization of the Ti-hematite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balsley J.R. and Buddington A.F., 1958. Iron titanium oxide minerals, rocks, and aeromagnetic anomalies of the Adirondack area, New York. Econ. Geol., 53, 777–805.

    Article  Google Scholar 

  • Breiter K. and Sulovský P., 2005. Geochronology of the Melechov granite massif. Zpr. Geol. Výzk. v Roce 2004, 16–19.

    Google Scholar 

  • Burton B.P., 1984. Thermodynamic analysis of the system Fe2O3-FeTiO3. Phys. Chem. Miner., 11, 132–139.

    Article  Google Scholar 

  • Burton B.P., Robinson P., McEnroe S.A., Fabian K. and Boffa Ballaran T., 2008. A Low-Temperature Phase Diagram for Ilmenite-rich Compositions in the System Fe2O3-FeTiO3. Am. Miner., 93, 1260–1272.

    Article  Google Scholar 

  • Carmichael C.M., 1964. Magnetization of a rock containing magnetite and hemoilmenite. Geophysics, 29, 87–92.

    Article  Google Scholar 

  • Čadková Z., Jakeš P., Haková M. and Mrázek P., 1985. The catalogue of geochemical data of the basic regional network. In: Litogeochemical Database of the Czech Geological Survey, Archive CGS, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Cháb J., Stráník Z. and Eliáš M., 2007. Geological Map of the Czech Republic 1: 500 000. Czech Geological Survey, Prague, Czech Republic.

    Google Scholar 

  • De Wall H., 2004. The field dependence of AC susceptibility in titanomagnetites: implications for the anisotropy of magnetic susceptibility. Geophys. Res. Lett., 27, 2409–2411.

    Article  Google Scholar 

  • Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Fediuk F., 1974. Cordieritregelung in moldanubischen Gneissen. Krystalinikum, 10, 79–88 (in German).

    Google Scholar 

  • Haggerty S.E., 1991. Oxide textures — a mini-atlas. Rev. Mineral., 25, 129–219.

    Google Scholar 

  • Hargraves R.N., 1959. Magnetic anisotropy and remanent magnetization in hemo-ilmenite from ore deposits of Allard Lake Quebec. J. Geophys. Res., 64, 1565–1573.

    Article  Google Scholar 

  • Harrison R.J., 2006. Microstructure and magnetism in the ilmenite-hematite solid solutions: a Monte Carlo simulation study. Am. Miner., 91, 1006–1023.

    Article  Google Scholar 

  • Hrouda F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. J. Int., 118, 604–612.

    Article  Google Scholar 

  • Hrouda F., 2002. Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks. Geophys. J. Int., 150, 715–723.

    Article  Google Scholar 

  • Hrouda F., Chlupáčová M. and Pokorný J., 2006a. Low-field variation of magnetic susceptibility measured by the KLY-4S Kappabridge and KLF-4A magnetic susceptibility meter: accuracy and interpretational programme. Stud. Geophys. Geod., 50, 283–298.

    Article  Google Scholar 

  • Hrouda F., Chlupáčová M. and Mrázová Š., 2006b. Low-field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks. Phys. Earth Planet. Inter., 154, 323–336.

    Article  Google Scholar 

  • Jelínek V., 1981. Characterization of the magnetic fabrics of rocks. Tectonophysics, 79, T63–T67.

    Article  Google Scholar 

  • Krupička J., 1968. The contact zone in the north of the Moldanubian Pluton. Krystalinikum, 6, 7–39.

    Google Scholar 

  • Lindh A., 1972. A hydrothermal investigation of the system FeO, Fe2O3, TiO2. Lithos, 5, 325–343.

    Article  Google Scholar 

  • Lindsley D.H. and Lindh A., 1974. A hydrothermal investigation of the system FeO, Fe2O3, TiO2: a discussion with new data. Lithos, 7, 65–68.

    Article  Google Scholar 

  • Losert J., 1968. On the genesis of nodular sillimanitic rocks. In: Malkovský M. (Ed.), International Geological Congress. Report of the 23rd Session. Vol. 4, Proceedings of Section 4. Geology of Pre-Cambrian. Academia and Geological survey of Czechoslovakia, Praha, Czechoslovakia, 109–122.

    Google Scholar 

  • McEnroe S.A. and Brown L.L., 2000. A closer look at remanence-dominated aeromagnetic anomalies: Rock magnetic properties and magnetic mineralogy of the Russel Belt microcline-sillimanite gneiss, northwest Adirondack Mountain, New York. J. Geophys. Res., 105(B7), 16437–16456.

    Article  Google Scholar 

  • McEnroe S.A., Robinson P. and Panish P.T., 2001a. Aeromagnetic anomalies, magnetic petrology and characterization of ilmenite and magnetite cumulates of the Sokndal Region, Rogaland, Norway. Am. Miner., 86, 1147–1468.

    Google Scholar 

  • McEnroe S.A., Harrison R.J., Robinson P., Golla U. and Jercinovic M.J., 2001b. Effect of fine scale microstructures in titanohematite on the acquisition and stability of natural remanent magnetization in granulite facies metamorphic rocks, southern Sweden: Implication for crustal magnetism. J. Geophys. Res., 106(B12), 30532–30546.

    Article  Google Scholar 

  • McEnroe S.A., Robinson P., Langenhorst F., Frandsen C., Terry M.P. and Ballarn T.B., 2007. Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral chemistry, phase relations, and magnetic properties of hemo-ilmenite ores with micron- to nanometer-scale lamellae from Allard Lake, Quebec. J. Gephys. Res., 112, B10103, doi: 10.1029/2007JB004973

    Article  Google Scholar 

  • Mücke A., 2003. Magnetite, ilmenite and ulvite in rocks and ore deposits: petrography, microprobe analyses and genetic implications. Mineral. Petrol., 77, 215–234.

    Article  Google Scholar 

  • Nagata T., 1961. Rock Magnetism. Maruzen, Tokyo, Japan, 352 pp.

    Google Scholar 

  • Özdemir Ö., Dunlop D.J. and Moskowitz B.M., 1993. The effect of oxidation on the Verwey transition in magnetite. Geophys. Res. Lett., 20, 1671–1674.

    Article  Google Scholar 

  • Özdemir Ö., Dunlop D.J. and Berquo T.S., 2008. Morin transition in hematite: Size dependence and thermal hysteresis. Geochem. Geophys. Geosyst., 9, Q10Z01, doi: 10.1029/2008GC002110.

    Article  Google Scholar 

  • Procházka V., 2007. Cordierite gneisses very rich in Ti-hematite from Orlík at Humpolec. Zprávy Geol. Výzk. v roce 2006, 133–135 (in Czech).

  • Procházka V., Matějka D. and Uher P., 2008. New information from known as well as unknown rocks in the surroundings of Lipnice nad Sázavou. Zpr. Geol. Výzk. v roce 2007, 30–33 (in Czech).

  • Řeháčková M., Šalanský K. and Zemánek V., 1963. Report about the Airborne Geophysical Measurement in 1961, III., Pelhřimov Surroundings. MS Geofond ČR, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Robinson P., Harrison R.J., McEnroe S.A. and Hargraves R.B., 2002. Lamellar magnetism in the hematite-ilmenite series as an explanation for strong remanent magnetization. Nature, 418, 517–520.

    Article  Google Scholar 

  • Robinson P., Harrison R.J., McEnroe S.A. and Hargraves R.B., 2004. Nature and origin of lamellar magnetism in the hematite-ilmenite series. Am. Miner., 89, 725–747.

    Google Scholar 

  • Robinson P., Heidelbach F., Hirt A.M., McEnroe S.A. and Brown L.L., 2006. Crystallographic-magnetic correlations in single-crystal haemo-ilmenite: new evidence for lamellar magnetism. Geophys. J. Int., 165, 17–31.

    Article  Google Scholar 

  • Scharbert S. and Veselá M., 1990. Rb-Sr systematics of intrusive rocks from the Moldanubicum around Jihlava. In: Minaříková D. and Lobitzer H. (Eds.), 30 Years of Geological Cooperation between Austria and Czechoslovakia. Czech Geological Survey, Prague, Czech Republic, 262–271.

    Google Scholar 

  • Suk M., 1964. Material characteristics of the metamorphism and migmatization of Moldanubian paragneisses in central Bohemia. Krystalinikum, 2, 71–105.

    Google Scholar 

  • Šalanský K., 1983. Regional magnetic structures in the Bohemian Massif on the territory of Czechoslovakia. Věst. Ústř. Úst. geol., 58, 275–286 (in Czech).

    Google Scholar 

  • Štěpánek P. (Ed.), 1995. Geological Map of the Czech Republic 1: 50 000, Sheet 23-21 Havlíčkův Brod. Czech Geological Survey, Prague, Czech Republic.

    Google Scholar 

  • Štěpánek P., 2002. Explanations to the Basic Geological Map of the Czech Republic 1: 25 000, Sheet 23-213 Humpolec. Czech Geological Survey, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Tarling D.H. and Hrouda F., 1993. The Magnetic Anisotropy of Rocks. Chapman & Hall, London, 217 pp.

    Google Scholar 

  • Worm H.-U., Clark D. and Dekkers M.J., 1993. Magnetic susceptibility of pyrrhotite: grain size, field and frequency dependence. Geophys. J. Int., 114, 127–137.

    Article  Google Scholar 

  • Zemánek V., 1964. Interpretation of Magnetic Anomalies in the Chýnov and Humpolec Regions. PhD Thesis, Faculty of Science of the Charles University, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Zemánek V., 1967. Interpretation of magnetic anomalies in the Obrataň and Humpolec regions of the Moladanubian. Sbor. Geol. Věd, Užitá Geofyz., 6, 125–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Procházka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procházka, V., Chlupáčová, M., Nižňanský, D. et al. Magnetomineralogy of the cordierite gneiss from the magnetic anomaly at Humpolec, Bohemian Moldanubicum (Czech Republic). Stud Geophys Geod 54, 95–120 (2010). https://doi.org/10.1007/s11200-010-0005-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0005-y

Keywords

Navigation