Skip to main content

Low-Temperature Magnetic Properties and Magnetic Mineralogy of the Ropruchey Sill (Russian Karelia)

  • Conference paper
  • First Online:
Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 550 Accesses

Abstract

We report low-temperature magnetic properties of predominantly mafic rocks from the Mesoproterozoic Ropruchey sill, Karelia. Based on microscopic observations, the studied rocks can be classified into two groups, granodiorites and gabbro-diorites, with different magnetic mineralogy. In granodiorites, the only magnetic mineral is stoichiometric magnetite characterized by a Verwey transition temperature of 120–121 K. In gabbro-diorites, the magnetic mineralogy is also dominated by magnetite, which however contains 2–3% of Ti substitution atoms, lowering the Verwey transition temperature to 94–103 K. In addition, the gabbro-diorites appear to contain some amount of a more Ti-rich titanomagnetite, as well as another, yet unidentified magnetic phase, manifesting itself by a peculiar temperature and frequency-dependent behavior of magnetic susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida, T. P., A. R. Muxworthy, W. Williams, T. Kasama, and R. Dunin-Borkowski (2014), Magnetic characterization of synthetic titanomagnetites: Quantifying the recording fidelity of ideal synthetic analogs, Geochemistry, Geophysics, Geosystems, 15, 161–175.

    Google Scholar 

  • Aragón, R., D. J. Buttrey, J. P. Shepherd, and J. M. Honig (1985), Influence of nonstoichiometry on the Verwey transition, Phys. Rev. B, 31, 430–436.

    Google Scholar 

  • Brachfeld, S. A., S. K. Banerjee, Y. Guyodo, and G. D. Acton (2002), A 13200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula, Earth Planet. Sci. Lett., 194, 311–326.

    Google Scholar 

  • Bulakh, A. G., Zolotarev, A. A., and Krivovichev V. G. (2014), Structure, isomorphism, formulae, classification of minerals. St. Petersburg, St. Petersburg University Publishers, 133 pp. (in Russian).

    Google Scholar 

  • Church, N., J. M. Feinberg, and R. Harrison (2011), Low-temperature domain wall pinning in titanomagnetite: Quantitative modeling of multidomain first-order reversal curve diagrams and AC susceptibility, Geochem. Geophys. Geosyst., 12, Q07Z27, https://doi.org/10.1029/2011gc003538.

  • Damm, V., T. S. Gendler, E. G. Gooskova, A. N. Khramov, M. Lewandowski, P. Nozharov, V. I. Pavlov, G. N. Petrova, S. A. Pisarevsky, and S. J. Sokolov (1997), Palaeomagnetic studies of Proterozoic rocks from the Lake Onega region, southern Fennoscandian Shield, Geophys. J. Int., 129, 518–530.

    Google Scholar 

  • Day, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267.

    Google Scholar 

  • Dunlop, D. J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107, https://doi.org/10.1029/2001jb000486.

  • Egli, R. (2013), VARIFORC: An optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams, Global and Planetary Change, 110, Part C, 302–320.

    Google Scholar 

  • Engelmann, R., A. Kontny, and D. Lattard (2010), Low-temperature magnetism of synthetic Fe-Ti oxide assemblages, J. Geophys. Res., 115, B12107, https://doi.org/10.1029/2010JB000865.

  • Fedotova, M. A., A. N. Khramov, B. N. Pisakin, and A. A. Priyatkin (1999), Early Proterozoic palaeomagnetism: new results from the intrusives and related rocks of the Karelian, Belomorian and Kola provinces, eastern Fennoscandian Shield, Geophys. J. Int., 137, 691–712.

    Google Scholar 

  • Kąkol, Z., and J. M. Honig (1989), The variation of Verwey transition temperature with oxygen stoichiometry in magnetite, Solid State Comm., 70, 967–969.

    Google Scholar 

  • Kosterov, A. (2001a), Magnetic properties of subaerial basalts at low temperatures, Earth Planets Space, 53, 883–892.

    Google Scholar 

  • Kosterov, A. (2001b), Magnetic hysteresis of pseudo-single-domain and multidomain magnetite below the Verwey transition, Earth Planet. Sci. Lett., 186, 245–253.

    Google Scholar 

  • Kosterov, A. (2003), Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history, Geophys. J. Int., 154, 58–71.

    Google Scholar 

  • Kosterov, A. (2007), Low-temperature magnetic properties, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera, Springer, Dortrecht, The Netherlands, 515–525.

    Google Scholar 

  • Kosterov, A., G. Conte, A. Goguitchaichvili, and J. Urrutia-Fucugauchi (2009), Low-temperature magnetic properties of andesitic rocks from Popocatepetl stratovolcano, Mexico, Earth Planets Space, 61, 133–142.

    Google Scholar 

  • Kosterov, A., E. S. Sergienko, P. V. Kharitonskii, and S. Yu. Yanson (2018), Low-temperature magnetic properties of basalts containing titanomagnetite with composition near ~ TM30, Isvestiya, Phys. Solid Earth, 54, 134–149.

    Google Scholar 

  • Kozłowski, A., Z. Kąkol, D. Kim, R. Zaleski, and J. M. Honig (1996), Heat capacity of Fe3–αMαO4 (M = Zn, Ti, 0 ≤ α ≤ 0.04), Phys. Rev. B, 54, 12093–12098.

    Google Scholar 

  • Lubnina, N. V., S. A. Pisarevsky, U. Söderlund, M. Nilsson, S. J. Sokolov, A. N. Khramov, A. G. Iosifidi, R. Ernst, M. A. Romanovskaya, and B. N. Pisakin (2012), New palaeomagnetic and geochronological data from the Ropruchey sill (Karelia, Russia): implications for late Palaeoproterozoic palaeogeography, in: Supercontinent Symposium, Espoo 2012 Program and Abstracts, 81–82.

    Google Scholar 

  • Moskowitz, B. M., M. Jackson, and C. Kissel (1998), Low-temperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149.

    Google Scholar 

  • Nagata, T. (1961), Rock Magnetism, Tokyo, Maruzen Co., 2nd ed., 350 pp.

    Google Scholar 

  • Özdemir, Ö., and D. J. Dunlop (2003), Low-temperature behavior and memory of iron-rich titanomagnetites (Mt. Haruna, Japan and Mt. Pinatubo, Philippines), Earth Planet. Sci. Lett., 216, 193–200.

    Google Scholar 

  • Petrovský, E., and A. Kapička (2006), On determination of the Curie point from thermomagnetic curves, J. Geophys. Res., 111, B12S27, https://doi.org/10.1029/2006jb004507.

  • Pisarevsky, S. A., S.-Å. Elming, L. J. Pesonen, and Z.-X. Li (2014), Mesoproterozoic paleogeography: Supercontinent and beyond, Precambrian Res., 244, 207–225.

    Google Scholar 

  • Radhakrishnamurty, C., and S. D. Likhite (1993), Frequency dependence of low-temperature susceptibility peak in some titanomagnetites, Phys. Earth Planet. Inter., 76, 131–135.

    Google Scholar 

  • Ramdohr, P. (1980), The ore minerals and their intergrowths, Pergamon Press., 2nd ed., 1207 pp.

    Google Scholar 

  • Roberts, A. P., D. Heslop, X. Zhao, and C. R. Pike (2014), Understanding fine magnetic particle systems through use of first-order reversal curve diagrams, Reviews of Geophysics, 52, 557–602.

    Google Scholar 

  • Smirnov, A. V. (2009), Grain size dependence of low-temperature remanent magnetization in natural and synthetic magnetite: Experimental study, Earth Planets Space, 61, 119–124.

    Google Scholar 

Download references

Acknowledgements

The samples for this study were kindly donated by Boris Pisakin. Magnetic measurements were carried out at Kochi Core Center, Kochi University, Japan and supported by the JSPS long-term visiting fellowship to AK. Electron microscopy and X-ray studies have been carried out using the facilities of the St. Petersburg University Scientific Park. This paper has benefited from a review by Karl Fabian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Kosterov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kosterov, A., Sergienko, E.S., Kharitonskii, P.V., Yanson, S.Y., Vasilieva, I.A. (2019). Low-Temperature Magnetic Properties and Magnetic Mineralogy of the Ropruchey Sill (Russian Karelia). In: Nurgaliev, D., Shcherbakov, V., Kosterov, A., Spassov, S. (eds) Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-90437-5_16

Download citation

Publish with us

Policies and ethics