Skip to main content
Log in

The Role of Models and Analogies in the Electromagnetic Theory: A Historical Case Study

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

Despite its great importance, many students and even their teachers still cannot recognize the relevance of models to build up physical knowledge and are unable to develop qualitative explanations for mathematical expressions that exist within physics. Thus, it is not a surprise that analogies play an important role in science education, since students’ construction of mental models of abstract phenomena need to be rooted in some existing or previous experience in order to interpret more complex ideas. The present article focuses on some of these issues by analyzing some specific instances of the historical development of the electromagnetic theory. Using the mental models framework, the importance of mechanical analogies to understand some of the electromagnetic concepts are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achinstein P. (1964). Models, Analogies, and Theories. Philosophy of Science 31(4):328–350

    Article  Google Scholar 

  • Barquero, B.: 1995, La Representatión de Estados Mentales en la Comprensión de Textos desde el Enfoque Teórico de los Modelos Mentales, Doctorate thesis, Universidad Autónoma de Madrid, Madrid

  • Adúriz-Bravo A., Morales L. (2002). El Concepto de Modelo en la Enseñanza de la Física – Consideraciones Epistemológicas, Didácticas y Retóricas. Caderno Brasileiro de Ensino de Física 19(1):79–92

    Google Scholar 

  • Borges A.T. (1998). Models of Magnetism. International Journal of Science Education 20(3):361–378

    Google Scholar 

  • Clement J. (1989). Learning Via Model Construction and Criticism. In: Glover G., Ronning R., Reynolds C. (eds). Handbook of Creativity: Assessment, Theory, and Research. Plenum, New York, pp. 341–81

    Google Scholar 

  • Clement J. (2000). Model Based Learning as a Key Research Area for Science Education. International Journal of Science Education 22(9):1041–1053

    Article  Google Scholar 

  • Coll R.K., France B., Taylor I. (2005). The Role of Models/and Analogies in Science Education: Implications from Research. International Journal of Science Education 27(2):183–198

    Article  Google Scholar 

  • Crowe J.M. (1967). A History of Vector Analysis: the Evolution of the Idea of a Vectorial System. University of Notre Dame Press, London

    Google Scholar 

  • Darrigol O. (2000). Electrodynamics from Ampère to Einstein. Oxford University Press, New York

    Google Scholar 

  • DeKleer J., Brown J.S. (1983). Assumptions and Ambiguities in Mechanistic Mental Models. In: Gentner D., Stevens A.L. (eds). Mental Models. Lawrence Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Duit R. (1991). On the Role of Analogies and Metaphors in Learning Science. Science Education 75(6):649–672

    Article  Google Scholar 

  • Gentner D., Stevens A.L. (1983). Mental Models. Lawrence Erlbaum, Hillsdale NJ

    Google Scholar 

  • Giere R.N. (1992). Cognitive Models of Sciece. In: Giere R. (eds). Minnesota Studies in the Philosophy of Science. University of Minneapolis Press, Minneapolis

    Google Scholar 

  • Gilbert J.K., Boulter C.J. (eds) (2000). Developing Models in Science Education, Kluwer, Dorbrecht

    Google Scholar 

  • Gilbert J.K., Boulter C.J., Elmer R. (2000). Positioning Models in Science Education and in Design and Technology Education. In: Gilbert J.K., Boulter C.J. (eds). Developing Models in Science Education. Kluwer, Dorbrecht

    Google Scholar 

  • Greca I.M., Moreira M.A. (1998). Modelos Mentales y Aprendizaje de Física en Electricidad y Magnetismo. Enseñanza de las ciencias 16(2):289–303

    Google Scholar 

  • Greca I.M., Moreira M.A. (2000). Mental Models, Conceptual Models, and Moddeling. International Journal of Science 22(1):1–11

    Article  Google Scholar 

  • Greca I.M., Moreira M.A. (2002). Mental, Physical, and Mathematical Models in the Teaching and Learning of Physics. Science Education 85(6):106–121

    Article  Google Scholar 

  • Hesse M. (1972). Models and Analogy in Science. In: Edwards P. (eds). The Encyclopedia of Philosophy. MacMillan, New York, vol. 5 pp. 354–359

    Google Scholar 

  • Heywood D. (2002). The Place of Analogies in Science Education. Cambridge Journal of Education 32(2):233–247

    Article  Google Scholar 

  • Isla S.M., Pesa M.A. (2003). ¿Qué Rol Asignan los Profesores de Física de Nivel Medio a los Modelos Científicos y a las Actividades de Modelado?. Enseñanza de las ciencias 21:57–66

    Google Scholar 

  • Johnson-Laird P.N. (1983). Mental Models. Harvard University Press, Cambridge

    Google Scholar 

  • Justi R.S., Gilbert J.K. (2002). Science Teachers’ Knowledge about and Attitudes towards the Use of Models and Modelling in Learning Science. International Journal of Science Education 24(12):1273–1292

    Article  Google Scholar 

  • Kipnis N. (2005). Scientific Analogies and Their Use in Teaching Science. Science & Education 14:199–233

    Article  Google Scholar 

  • Lozano S.R., Cardenas M. (2002). Some Learning Problems Concerning the Use of Symbolic Language in Physics. Science & Education 11:589–599

    Article  Google Scholar 

  • Maxwell J.C. (1861). On Physical Lines of Force, part II. Philosophical Magazine 21:281–91

    Google Scholar 

  • Maxwell J.C. (1954). Treatise on Electricity and Magnetism. Dover, New York

    Google Scholar 

  • Maxwell J.C. (1965). The Scientific Papers. Dover, New York Volume 1

    Google Scholar 

  • Nersessian N.J. (1992). How Do Scientistis Think? Capturing the Dynamics of Conceptual Change in Science. In: Giere R. (eds). Minnesota Studies in the Philosophy of Science. University of Minneapolis Press, Minneapolis

    Google Scholar 

  • Nersessian N. (1995). Should Physicists Preach what They Practice?. Science & Education 4:203–226

    Article  Google Scholar 

  • Nersessian N.J. (2002). Maxwell and the “Method of Physical Analogy”: Model-based Reasoning, Generic Abstraction, and the Conceptual Change. In: Malament D. (eds). Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics. Open Court, Lassalle, pp. 129–166

    Google Scholar 

  • Rainson S., Transtromer G., Viennot L. (1994). ‘Students’ Understanding of Superposition of Electric Fields’. American Journal of Physics 62(11):1026–1032

    Article  Google Scholar 

  • Silva, C.C.: 2002, Da Força ao Tensor: Evolução do Conceito Físico e da Representação Matemática do Campo Eletromagnético. Doctorate dissertation. Universidade Estadual de Campinas. Instituto de Física “Gleb Wataghin”, Campinas-Brazil

  • Silva C.C., Martins R.A. (2003). William Thomson e o Uso de Analogias e Modelos no Eletromagnetismo. Epistemología e Historia de la Ciencia 9:401–409

    Google Scholar 

  • Silva, C.C. & Pietrocola, M.: 2003, ‘O Papel Estruturante da Matemática na Teoria Eletromagnética: um Estudo Histórico e Suas Implicações Didáticas’, paper presented at the IV ENPEC (IV National Meeting of Researchers on Science Teaching), Bauru-Brazil

  • Thagard P. (1992). Analogy, Explanation and Education. Journal of Research in Science Teaching 29(6):537–544

    Article  Google Scholar 

  • Thomson W. (1872). On the Uniform Motion of Heat in Homogeneous Solid Bodies and its Connection with Mathematical Theory of Electricity. In: Thomson W. (eds). Reprint of Papers on Electrostatic and Magnetism. MacMillan & Co, London, pp. 1–14

    Google Scholar 

  • Thomson W. (1882/1911). On a Mechanical Representation of Electric, Magnetic, and Galvanic Forces. In Thomson W. (eds). Mathematical and Physical Papers of William Thomson. Cambridge University Press, Cambridge, vol. 1 pp. 76–80

    Google Scholar 

  • Thomson, W.: 1884, Notes of Lectures on Molecular Dynamics and the Wave Theory of Light. Delivered at the John Hopkins University of Baltimore. Stenographically reported by A. S. Hathaway

  • Van Driel I., Verloop N. (1999). Teachers’ Knowledge of Models and Modelling Science. International Journal of Science Education 21(11):1141–1153

    Article  Google Scholar 

Download references

Acknowledgements

I appreciate the reviewers’ comments and recommendations. I wish to thank Roberto de Andrade Martins and Maurício Pietrocola who provided stimulating discussions. I am also thankful to The State of Sao Paulo Research Foundation and to The National Council for Scientific and Technological Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cibelle Celestino Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, C.C. The Role of Models and Analogies in the Electromagnetic Theory: A Historical Case Study. Sci & Educ 16, 835–848 (2007). https://doi.org/10.1007/s11191-006-9008-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-006-9008-z

Keywords

Navigation