Skip to main content

Advertisement

Log in

Extractive determination of bioactive flavonoids from butterfly pea (Clitoria ternatea Linn.)

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Recently, in the field of natural product drug discovery, there has been increasing interest in effective extraction and isolation of bioactive phytomolecules from plants for use as important starting materials or chemical intermediates for new drug development. In this investigation, various solvent extracts of butterfly pea (Clitoria ternatea Linn.) were evaluated in terms of phenolic content and antioxidant activity. Moreover, various parameters influencing optimal flavonoid extraction were studied based on determination of the quercetin and kaempferol yields by an improved high-performance liquid chromatography (HPLC) method. The results indicated that the total phenolics and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging activity were maximum for the 80 % aqueous methanol extract, while the 1,1-diphenyl-2-picrylhydrazyl (DPPH) reducing power and flavonoid content were maximum in the methanol extract. Different solvent extracts showed significantly (p < 0.05) different phytochemical yield and antioxidant capacity. Furthermore, the total phenol and flavonoid contents revealed good (p < 0.001) correlations with scavenging potency. The maximum flavonoid content was found for methanol concentration, time, temperature, and solid-to-liquid ratio of 80 %, 60 min, 80 °C, and 1:20 g/mL, respectively. It is concluded that butterfly pea leaf can be considered a potential source of flavonoids with good antioxidant properties for use in dietary applications. The extraction protocols developed in this study can be readily scaled up for industrial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Mustafa, C. Turner, Anal. Chim. Acta 703, 8 (2011)

    Article  CAS  Google Scholar 

  2. V.T. Nguyen, M.C. Bowyer, Q.V. Vuong, I.A.V. Altena, C.J. Scarlett, Ind. Crop. Prod. 67, 192 (2016)

    Article  Google Scholar 

  3. S.K. Banerjee, C.G. Bonde, J. Med. Plants Res. 5, 817 (2011)

    CAS  Google Scholar 

  4. Z.L. Sheng, P.F. Wan, C.L. Dong, Y.H. Li, Ind. Crop. Prod. 43, 778 (2013)

    Article  CAS  Google Scholar 

  5. A.M. Nuutila, K. Kammiovirta, Food Chem. 76, 519 (2002)

    Article  CAS  Google Scholar 

  6. B. Halliwell, Nutr. Rev. 55, 44 (1997)

    Article  Google Scholar 

  7. L. Zhang, Z.C. Tu, T. Yuan, H. Wang, Z.F. Fu, Q.H. Wen, X.Q. Wanga, Ind. Crop. Prod. 56, 223 (2014)

    Article  CAS  Google Scholar 

  8. A.A.M. Botterweck, H. Verhagen, R.A. Goldbohm, J. Kleinjans, P.A. Van den Brandt, Food Chem. Toxicol. 38, 599 (2000)

    Article  CAS  Google Scholar 

  9. A. Scalbert, C. Manach, C. Morand, C. Remesy, L. Jimenez, Crit. Rev. Food Sci. Nutr. 45, 287 (2005)

    Article  CAS  Google Scholar 

  10. J.A. Ross, C.M. Kasum, Annu. Rev. Nutr. 22, 19 (2002)

    Article  CAS  Google Scholar 

  11. M.C.J. Montano, B.E. Morón, P.C. Guerrero, L.M. Lázaro, Mini Rev. Med. Chem. 11, 298 (2011)

    Article  Google Scholar 

  12. L. Parul, K.R. Deepak, IJMU 2, 22 (2007)

    Google Scholar 

  13. J.D. Tena, E. Burgos-Morón, J. Calderón-Montaño, I. Sanz, J. Sainz, M. Lopez-Lazaro, Web Med Cent. CANCER 4, WMC004264 (2013). doi:10.9754/journal.wmc.2013.004264

    Google Scholar 

  14. R.R. Mendonça Filho, Modern phytomedicine: turning medicinal plants into drugs, (Weinheim, Weley, 2006), pp. 1–25

  15. G.M. Cragg, D.J. Newman, Biochim. Biophys. Acta 1830, 3670 (2013)

    Article  CAS  Google Scholar 

  16. L. Mouhssen, Pharmacol. Pharm. 4, 17 (2013)

    Article  Google Scholar 

  17. P.K. Mukherjee, V. Kumar, N.S. Kumar, M. Heinrich, J. Ethnopharmacol. 120, 291 (2008)

    Article  Google Scholar 

  18. N.K. Sethiya, A. Nahata, S.H. Mishra, V.K. Dixit, J. Chin. Integr. Med. 7, 1001 (2009)

    Article  CAS  Google Scholar 

  19. Z. Ali, S.H. Ganie, A. Narula, M.P. Sharma, P.S. Srivastava, Ind. Crop. Prod. 43, 768 (2013)

    Article  CAS  Google Scholar 

  20. M’hiri, I. Ioannou, N. Mihoubi Boudhrioua, M. Ghoul et al., Food Bioprod. Proc. 96, 161 (2015)

    Article  Google Scholar 

  21. Q. Xu, Y. Shen, H. Wang, N. Zhang, S. Xu, L. Zhang, Food Chem. 138, 2122 (2012)

    Article  Google Scholar 

  22. K.S. Rao, P.K. Chaudhury, A. Pradhan, Food Chem. Toxicol. 48, 729 (2010)

    Article  Google Scholar 

  23. R. Re, N. Pellegrini, A.S. Protegenete, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231 (1999)

    Article  CAS  Google Scholar 

  24. O. Sticher, Nat. Prod. Rep. 25, 517 (2008)

    Article  CAS  Google Scholar 

  25. H.M. Amir, C.M.M. Duarte, F. Maiza, Ind. Crop. Prod. 67, 249 (2015)

    Article  Google Scholar 

  26. S.N. Lou, Y.S. Hsu, C.T. Ho, J. Food Drug Anal. 22, 290 (2014)

    Article  CAS  Google Scholar 

  27. C. Yin, D. Wan, Pharmacogn. Mag. 8, 273 (2012)

    Article  Google Scholar 

  28. A. Ghasemzadeh, H.Z. Jaafar, E. Karimi, A. Rahmat, B.M.C. Complemen, Altern. Med. 14, 318 (2014)

    Google Scholar 

  29. B.W. Williams, M.E. Cuvelier, C. Berset, LWT Food Sci. Tech. 28, 25 (1995)

    Article  Google Scholar 

  30. M. Ozgen, R.N. Reese, A.Z. Tulio Jr., J.C. Scheerens, A.R. Miller, J. Agric. Food Chem. 54, 1151 (2006)

    Article  CAS  Google Scholar 

  31. Z.R. Addai, A. Abdullah, S.A. Mutalib, J. Med. Plants Res. 7, 3354 (2013)

    CAS  Google Scholar 

  32. Q.V. Nguyen, V.B. Nguyen, J.B. Eun, S.L. Wang, D.H. Nguyen, T.N. Tran, A.D. Nguyen, Res. Chem. Intermed. 42, 5859 (2016)

    Article  CAS  Google Scholar 

  33. F. Kormin, I. Ahmed, R.M. Yunus, Z.A.M. Yusof, Int. J. Eng. Technol. 10, 7 (2010)

    Google Scholar 

  34. J. Dai, R. Mumper, Molecules 15, 7313 (2010)

    Article  CAS  Google Scholar 

  35. T. Sathishkumar, R. Baskar, M. Aravind, S. Tilak, S. Deepthi, V.M. Bharathikumar, ISRN Biotech. 1, 1 (2013)

  36. S. Deng, B.J. West, C.J. Jensen, Adv. J. Food Sci. Technol. 3, 155 (2011)

    CAS  Google Scholar 

  37. M.G.L. Hertog, P.C.H. Hollman, D.P. Venema, J. Agric. Food Chem. 40, 1591 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank the Director of SVNIT, Surat and Director of ICAR-DMAPR, Boriavi, Anand for extending the facilities necessary for this work. The authors are grateful to Dr. (Ms) K. A. Geetha for providing C. ternatea leaf material, Dr. V. Ravi for critically going through the manuscript, and Dr. (Ms) Aarti Kavane for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharatkumar Z. Dholakiya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makasana, J., Dholakiya, B.Z., Gajbhiye, N.A. et al. Extractive determination of bioactive flavonoids from butterfly pea (Clitoria ternatea Linn.). Res Chem Intermed 43, 783–799 (2017). https://doi.org/10.1007/s11164-016-2664-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2664-y

Keywords

Navigation