Skip to main content

Advertisement

Log in

Mechanism of CO preferential oxidation catalyzed by Cu n Pt (n = 3–12): a DFT study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The CO preferential oxidation reaction (PROX) is particularly well suited for hydrogen purification for proton exchange membrane fuel cell applications. In this work, the mechanism of CO-PROX catalyzed by Cu n Pt (n = 3–12) clusters has been studied by density functional theory calculations. The calculated results indicate that the most favored adsorption site of H2 for all clusters is on the Pt sites, and O2 prefers to bind on Cu sites and CO bind on Pt sites. The lowest energy barrier for hydrogen dissociation is 0.02 eV. Smaller H–Pt bond length of Cu n PtH2 corresponds to larger H–H bond length. CO-PROX occurs via the main intermediates of COOH and OH. Cu6Pt is proposed as the most effective catalyst for CO-PROX. To understand the high catalytic activity of Cu n Pt clusters, the nature of the interaction between adsorbate and substrate is also analyzed by detailed electronic local density of states. These findings enrich applications of Cu-based materials to the field of high-activity catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Ebashi, Y. Ishida, Y. Nakagawa, S. Ito, T. Kubota, K. Tomishige, J. Phys. Chem. C 114, 6518–6526 (2010)

    Article  CAS  Google Scholar 

  2. F. Morfin, S. Nassreddine, J.L. Rousset, L. Piccolo, ACS Catal. 2, 2161–2168 (2012)

    Article  CAS  Google Scholar 

  3. L. Xu, Z. Wu, Y. Zhang, B. Chen, Z. Jiang, Y. Ma, W. Huang, J. Phys. Chem. C 115, 14290–14299 (2011)

    Article  CAS  Google Scholar 

  4. A.B. Mhadeshwar, D.G. Vlachos, J. Phys. Chem. B 108, 15246–15258 (2004)

    Article  CAS  Google Scholar 

  5. A. Hussain, J. Gracia, J.W. Niemantsverdriet, B.E. Nieuwenhuys, Molecules 16, 9582–9599 (2011)

    Article  CAS  Google Scholar 

  6. K. Liu, A. Wang, W. Zhang, J. Wang, Y. Huang, X. Wang, J. Shen, T. Zhang, Ind. Eng. Chem. Res. 50, 758–766 (2011)

    Article  CAS  Google Scholar 

  7. S.C. Wong, H.C. Hsiao, K.F. Lo, Int. J. Hydrog. Energy 39, 6492–6496 (2014)

    Article  CAS  Google Scholar 

  8. H. Zhang, M. Jin, H. Liu, J. Wang, M.J. Kim, D. Yang, Z. Xie, J. Liu, Y. Xia, ACS Nano 5, 8212–8222 (2011)

    Article  CAS  Google Scholar 

  9. K. Liu, A. Wang, T. Zhang, ACS Catal. 2, 1165–1178 (2012)

    Article  CAS  Google Scholar 

  10. D. Gamarra, C. Belver, M. Fernández-García, A. Martínez-Arias, J. Am. Chem. Soc. 129, 12064–12065 (2007)

    Article  CAS  Google Scholar 

  11. O.H. Laguna, W.Y. Hernάndez, G. Arzamendi, L.M. Gandía, M.A. Centeno, J.A. Odriozola, Fuel 118, 176–185 (2014)

    Article  CAS  Google Scholar 

  12. A. Iglesias-Gonzάlez, J.L. Ayastuy, M.P. Gonzάlez-Marcos, M.A. Gutiérrez-Ortiz, Int. J. Hydrog. Energy 39, 5213–5224 (2014)

    Article  Google Scholar 

  13. X. Li, S. Soon Fang, J. Teo, Y. Lim Foo, A. Borgna, M. Lin, Z. Zhong, ACS Catal. 2, 360–369 (2012)

    Article  CAS  Google Scholar 

  14. R. Zhang, T. Haddadin, D.P. Rubiano, H. Nair, C.S. Polster, C.D. Baertsch, ACS Catal. 1, 519–525 (2011)

    Article  CAS  Google Scholar 

  15. M.J. Kahlich, H.A. Gasteiger, R.J. Behm, J. Catal. 171, 93–105 (1997)

    Article  CAS  Google Scholar 

  16. A. Manasilp, E. Gulari, Appl. Catal. B Environ. 37, 17–25 (2002)

    Article  CAS  Google Scholar 

  17. S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 7, 333–338 (2008)

    Article  CAS  Google Scholar 

  18. Q.L. Zhang, L. Shore, R.J. Farrauto, Int. J. Hydrog. Energy 37, 10874–10880 (2012)

    Article  CAS  Google Scholar 

  19. J. Kugai, T. Moriya, S. Seino, T. Nakagawa, Y. Ohkubo, H. Nitani, T.A. Yamamoto, Int. J. Hydrog. Energy 38, 4456–4465 (2013)

    Article  CAS  Google Scholar 

  20. C. Wang, B. Li, H. Lin, Y. Yuan, J. Power Sources 202, 200–208 (2012)

    Article  CAS  Google Scholar 

  21. S.H. Lu, C. Zhang, Y. Liu, Int. J. Hydrog. Energy 36, 1939–1948 (2011)

    Article  CAS  Google Scholar 

  22. T.S. Mozer, F.B. Passos, Int. J. Hydrog. Energy 36, 13369–13378 (2011)

    Article  CAS  Google Scholar 

  23. T. Komatsu, M. Takasaki, K. Ozawa, S. Furukawa, A. Muramatsu, J. Phys. Chem. C 117, 10483–10491 (2013)

    Article  CAS  Google Scholar 

  24. J. Kugai, T. Moriya, S. Seino, T. Nakagawa, Y. Ohkubo, H. Nitani, Y. Mizukoshi, T.A. Yamamoto, Appl. Catal. B Environ. 126, 306–314 (2012)

    Article  CAS  Google Scholar 

  25. T. Komatsu, A. Tamura, J. Catal. 258, 306–314 (2008)

    Article  CAS  Google Scholar 

  26. J. Kugai, T. Moriya, S. Seino, T. Nakagawa, Y. Ohkubo, H. Nitani, H. Daimon, T.A. Yamamoto, Int. J. Hydrog. Energy 37, 4787–4797 (2012)

    Article  CAS  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, J. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  28. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision C. 01 (Gaussian Inc., Wallingford, 2010)

    Google Scholar 

  29. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

    Article  CAS  Google Scholar 

  30. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    Article  CAS  Google Scholar 

  31. F. Wang, D. Zhang, X. Xu, Y. Ding, J. Phys. Chem. C 113, 18032–18039 (2009)

    Article  CAS  Google Scholar 

  32. F. Wang, D. Zhang, Y. Ding, J. Phys. Chem. C 114, 14076–14082 (2010)

    Article  CAS  Google Scholar 

  33. C.Y. Peng, P.Y. Ayala, H.B. Schlegel, J. Comput. Chem. 17, 49 (1996)

    Article  CAS  Google Scholar 

  34. C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90, 2154 (1989)

    Article  CAS  Google Scholar 

  35. C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 54, 5523 (1990)

    Article  Google Scholar 

  36. Huber KP, Herzberg G. New York: Van Nostrand Reinhold (1979)

  37. M.D. Morse, J. Chem. Rev. 86, 1049 (1986)

    Article  CAS  Google Scholar 

  38. X.X. Yuan, L. Liu, X. Wang, M. Yang, J. Phys. Chem. A 115, 8705–8712 (2011)

    Article  CAS  Google Scholar 

  39. M. Yang, F. Yang, K.A. Jackson, J. Jellinek, J. Chem. Phys. 132, 064306 (2010)

    Article  CAS  Google Scholar 

  40. A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, J. Am. Chem. Soc. 132, 7418–7428 (2010)

    Article  CAS  Google Scholar 

  41. K. Tanaka, M. Shou, Y. Yuan, J. Phys. Chem. C 114, 16917–16923 (2010)

    Article  CAS  Google Scholar 

  42. Q. Fu, Y. Luo, J. Phys. Chem. C 117, 14618–14624 (2013)

    Article  CAS  Google Scholar 

  43. A. Fukuoka, J. Kimura, T. Oshio, Y. Sakamoto, M. Ichikawa, J. Am. Chem. Soc. 129, 10120–10125 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant no. 20603021), the Natural Science Foundation of Shanxi (grant no. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (grant nos. 105088, 2015537) and Shanxi Normal University (SD2013CXCY-65), and Teaching Reform Project of Shanxi Normal University (SD2013JGXM-51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Guo, L., Wen, C. et al. Mechanism of CO preferential oxidation catalyzed by Cu n Pt (n = 3–12): a DFT study. Res Chem Intermed 41, 10049–10066 (2015). https://doi.org/10.1007/s11164-015-2012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2012-7

Keywords

Navigation