Skip to main content
Log in

Reaction mechanism of the preferential oxidation of the CO reaction in an H2 stream over Cu–Ni bimetallic catalysts: A computational study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The preferential oxidation (PROX, CO + H2 + O2 → CO2 + H2O) of the CO reaction in an H2 stream is the simplest and most cost-effective method to remove CO gas to less than 10 ppm in reformed fuel gas. We study the mechanism of PROX of the CO reaction in the H2 stream catalyzed by Cu n Ni (n = 3-12) clusters using a density functional theory (DFT) calculation to investigate bimetallic effects on the catalytic activation. Our results indicate that the Cu12Ni cluster is the most efficient catalyst for H2 dissociation and the Cu6Ni cluster is the most efficient catalyst for CO-PROX in excess hydrogen among Cu n Ni (n = 3-12) clusters. To gain insight into the adsorption and dissociation of the H2 molecule effect in the catalytic activity over the Cu12Ni cluster and the potential energy surfaces about PROX of CO oxidation on the Cu6Ni cluster, the nature of the interaction between the adsorbate and substrate is analyzed by detailed electron local densities of states (LDOS) as well as molecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Carlton, S. Chen, P. J. Ferreira, L. F. Allard, and Y. S. Horn, J. Phys. Chem. Lett., 3, 161–166 (2012).

    Article  CAS  Google Scholar 

  2. H. Wakita, K. Ukai, T. Takeguchi, and W. Ueda, J. Phys. Chem. C, 111, 2205–2211 (2007).

    Article  CAS  Google Scholar 

  3. K. C. Lauzze and D. J. Chmielewski, Ind. Eng. Chem. Res. 45, 4661–4670 (2006).

    Article  CAS  Google Scholar 

  4. K. Liu, A. Wang, and T. Zhang, ACS Catal., 2, 1165–1178 (2012).

    Article  CAS  Google Scholar 

  5. J. G. E. Cohn, Patented Nov., 9, 3216782 (1965).

    Google Scholar 

  6. J. Gustafson, R. Westerstro, O. Balmes, A. Resta, R. Rijn, X. Torrelles, C. T. Herbschleb, J. W. M. Frenken, and E. Lundgren, J. Phys. Chem. C, 114, 4580–4583 (2010).

    Article  CAS  Google Scholar 

  7. T. Tabakova, M. Manzoli, F. Vindigni, V. Idakiev, and F. Boccuzzi, J. Phys. Chem. A, 114, 3909–3915 (2010).

    Article  CAS  Google Scholar 

  8. O. H. Laguna, W. Y. Hernandez, G. Arzamendi, L. M. Gandia, M. A. Centeno, and J. A. Odriozola, Fuel 118, 176–185 (2014).

    Article  CAS  Google Scholar 

  9. P. Sangeetha, L. H. Chang, and Y. W. Chen, Ind. Eng. Chem. Res. 48, 5666–5670 (2009).

    Article  CAS  Google Scholar 

  10. A. Fukuoka, J. Kimura, T. Oshio, Y. Sakamoto, and M. Ichikawa, J. Am. Chem. Soc., 129, 10120–10125 (2007).

    Article  CAS  Google Scholar 

  11. H. Zhang, M. Jin, H. Liu, J. Wang, M. J. Kim, D. Yang, Z. Xie, J. Liu, and Y. Xia, ACSNano, 5, 8212–8222 (2011).

    CAS  Google Scholar 

  12. E. Y. Ko, E. D. Park, H. C. Lee, D. Lee, and S. Kim, Angew. Chem. Int. Ed. 46, 734–737 (2007).

    Article  CAS  Google Scholar 

  13. Z. Y. Pu, X. S. Liu, A. P. Jia, Y. L. Xie, J. Q. Lu, and M. F. Luo, J. Phys. Chem. C, 112, 15045–15051 (2008).

    Article  CAS  Google Scholar 

  14. B. Yang, R. Burch, G. Hardacre, and Hu. P. Headdock, ACS Catal. 2, 1027–1032 (2012).

    Article  CAS  Google Scholar 

  15. W. Wei, Y. Dai, and B. Huang, J. Phys. Chem. C, 115, 18597–18602 (2011).

    Article  CAS  Google Scholar 

  16. V. Umamaheswari, M. Hartmann, and A. Pöppl, J. Phys. Chem. B, 109, 1537–1546 (2005).

    Article  CAS  Google Scholar 

  17. S. Shen, L. Zhao, Z. Zhou, and L. Guo, J. Phys. Chem. C, 112, 16148–16155 (2008).

    Article  CAS  Google Scholar 

  18. A. M. Arias, D. Gamarra, M. F. García, A. Hornés, P. Bera, Z. Koppány, and Z. Schay, Catal. Today 143, 211–217 (2009).

    Article  Google Scholar 

  19. X. Liua, A. Wanga, T. Zhanga, D. Sub, and C. Y. Mouc, Catal. Today 160, 103–108 (2011).

    Article  Google Scholar 

  20. T. Komatsu, M. Takasaki, K. Ozawa, S. Furukawa, and A. Muramatsun, J. Phys. Chem. C, 117, 10483–10491 (2013).

    Article  CAS  Google Scholar 

  21. J. Kugai, T. Moriya, S. Seino, T. Nakagawa, Y. Ohkubo, H. Nitani, K. Ueno, and T. A. Yamamoto, J. Phys. Chem. C, 117, 5742–5751 (2013).

    Article  CAS  Google Scholar 

  22. L. Y. Gan, R. Y. Tian, X. B. Yang, H. D. Lu, and Y. J. Zhao, J. Phys. Chem. C, 116, 745–752 (2012).

    Article  CAS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Hey, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc. Wallingford CT. (2009).

    Google Scholar 

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  25. W. R. Wadt and P. J. Hay, J. Chem. Phys., 82, 270–283 (1985).

    Article  Google Scholar 

  26. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 299–310 (1985).

    Article  CAS  Google Scholar 

  27. C. Peng, P. Y. Ayala, and H. B. Schlegel, J. Comput. Chem., 17, 49–56 (1996)

    Article  CAS  Google Scholar 

  28. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 90, 2154–2161 (1989)

    Article  CAS  Google Scholar 

  29. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 54, 5523–5527 (1990).

    Article  Google Scholar 

  30. E. D. Glendening, A. E. Reed, and J. E. Carpenter, Weinhold. NBO, Theoretical Chemistry Institute, University of Wisconsin Madison (2001).

    Google Scholar 

  31. K. P. Huber and G. Herzberg, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York (1979).

    Book  Google Scholar 

  32. M. D. Morse, Chem. Rev. 86, 1049–1109 (1988).

    Article  Google Scholar 

  33. B. Yin, Y. Yin, Y. Lei, L. Dong, and Y. Zhang, Chem. Phys. Lett. 509, 192–197 (2011).

    Article  CAS  Google Scholar 

  34. Z. Cao, Y. Wang, J. Zhu, W. Wu, and Q. Zhang, J. Phys. Chem. B, 106, 9649–9654 (2002).

    Article  CAS  Google Scholar 

  35. M. Yang, F. Yang, K. A. Jackson, and J. Jellinek, J. Chem. Phys., 132, 064306 (2010).

    Article  CAS  Google Scholar 

  36. E. Florez, F. Mondragón, and P. Fuentealba, J. Phys. Chem. B, 110, 13793–13798 (2006).

    Article  CAS  Google Scholar 

  37. S. L. Han, X. Xue, X. C. Nie, H. Zhai, F. Wang, Q. Sun, Y. Jia, S. F. Li, and Z. X. Guo, Phys. Lett. A 374, 4324–4330 (2010).

    Article  CAS  Google Scholar 

  38. K. M. Tanaka and Y. Shou, J. Phys. Chem. C, 114, 16917–16923 (2010).

    Article  CAS  Google Scholar 

  39. K. Tanaka, M. Shou, H. He, X. Shi, and X. Zhang, J. Phys. Chem. C, 113, 12427–12433 (2009).

    Article  CAS  Google Scholar 

  40. A. W. Pelzer, J. Jellinek, and K. A. Jackson, J. Phys. Chem. A, 117, 10407–10415 (2013).

    Article  CAS  Google Scholar 

  41. Q. Fu and Y. Luo, J. Phys. Chem. C, 117, 14618–14624 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guo.

Additional information

Original Russian Text © 2017 N. Liu, L. Guo, C. Wen, Z. Cao.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 58, No. 8, pp. 1661-1674, November-December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Guo, L., Wen, C. et al. Reaction mechanism of the preferential oxidation of the CO reaction in an H2 stream over Cu–Ni bimetallic catalysts: A computational study. J Struct Chem 58, 1611–1624 (2017). https://doi.org/10.1134/S0022476617080194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617080194

Keywords

Navigation