Skip to main content

Advertisement

Log in

Life-history plasticity in amphidromous and catadromous fishes: a continuum of strategies

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Plastic life-history strategies in diadromous fishes have long been acknowledged but have often been viewed as anomalies. Until recently, techniques were lacking to investigate the prevalence and variety of life-history strategies. However, recent technical advances, such as otolith trace element and stable isotope analyses, have provided insights into the life-histories of migratory fish, often revealing considerable plasticity. Reviews of anadromy and catadromy examined the extent of plasticity in these life-histories; however amphidromy has not been reviewed. Amphidromy, the most widespread diadromous life-history (273 + sp.), consists of two types: freshwater amphidromy, where fish rear in the ocean as larvae and return to freshwater as juveniles for growth and reproduction, and marine amphidromy, where fish utilize the marine environment for larval growth, enter freshwater for a short time, and return to the marine environment for further growth and spawning. In this review, a detailed taxonomic examination of plasticity in amphidromous fishes is utilized to determine its prevalence and ecological role. Our results indicate plasticity, as evidenced by variable use of fresh or marine environments for key life-history stages, is present on both evolutionary and ecological scales in most families of amphidromous fishes. Such variability indicates amphidromy is not necessarily a diadromous migration, but is better viewed as a spatially extensive benthic-pelagic migration. Further, adult downstream migration by amphidromous fishes parallels catadromy, suggesting a life-history continuum linking fluvial, amphidromous, catadromous, and oceanadromous life-histories. The role of egg-size/fecundity tradeoffs, migration, salinity, and landscape are discussed in the context of benthic-pelagic centered life-histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alerstam T, Hedenstrom A, Akesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Article  Google Scholar 

  • Baker CF, Hicks BJ (2003) Attraction of migratory inanga (Galaxias maculatus) and koaro (Galaxias brevipinnis) juveniles to adult galaxiid odours. N Z J Mar Freshw Res 37:291–299

    Article  Google Scholar 

  • Barriga JP, Battini MA, Cussac VE (2007) Annual dynamics variation of a landlocked Galaxias maculatus (Jenyns 1842) population in a Northern Patagonian river: occurrence of juvenile upstream migration. J Appl Ichthyol 23:128–135

    Article  Google Scholar 

  • Brehmer P, Guillard J, Pinzon PIC, Bach P (2011) Exploratory and instantaneous swimming speeds of amphidromous fish school in shallow-water coastal lagoon channels. Estuar Coast 34:739–744

    Article  Google Scholar 

  • Chapman A, Morgan DL, Gill HS (2009) Description of the larval development of Galaxias maculatus in landlocked lentic and lotic systems in Western Australia. N Z J Mar Freshw Res 43:563–569

    Article  Google Scholar 

  • Chapman BB, Hulthen K, Brodersen J, Nilsson PA, Skov C, Hansson LA et al (2012a) Partial migration in fishes: causes and consequences. J Fish Biol 81:456–478

    Article  CAS  PubMed  Google Scholar 

  • Chapman BB, Skov C, Hulthen K, Brodersen J, Nilsson PA, Hansson LA et al (2012b) Partial migration in fishes: definitions, methodologies and taxonomic distribution. J Fish Biol 81:479–499

    Article  CAS  PubMed  Google Scholar 

  • Close PG, Ryan TJ, Morgan DL, Beatty SJ, Lawrence CS (2014) First record of ‘climbing’ and ‘jumping’ by juvenile Galaxias truttaceus Valenciennes, 1846 (Galaxiidae) from south-western Australia. Aust J Zool 62:175–179

    Article  Google Scholar 

  • Closs GP, Warburton M (2016) Amphidromy. In: Morais P, Daverat F (eds) An introduction to fish migration. CRC Press, Boca Raton

    Google Scholar 

  • Closs GP, Smith M, Barry B, Markwitz A (2003) Non-diadromous recruitment in coastal populations of common bully (Gobiomorphus cotidianus). N Z J Mar Freshw Res 37:301–313

    Article  Google Scholar 

  • Closs GP, Hicks AS, Jellyman PG (2013) Life histories of closely related amphidromous and non-migratory fish species: a trade-off between egg size and fecundity. Freshw Biol 58:1162–1177

    Article  Google Scholar 

  • Crook DA, Macdonald JI, O’Connor JP, Barry B (2006) Use of otolith chemistry to examine patterns of diadromy in the threatened Australian grayling Prototroctes maraena. J Fish Biol 69:1330–1344

    Article  CAS  Google Scholar 

  • Crook DA, Macdonald JI, Raadik TA (2008) Evidence of diadromous movements in a coastal population of southern smelts (Retropinninae: Retropinna) from Victoria, Australia. Mar Freshw Res 59:638–646

    Article  CAS  Google Scholar 

  • Daverat F, Limburg KE, Thibault I, Shiao JC, Dodson JJ, Caron FO, Tzeng WN, Lizuka Y, Wickstrom H (2006) Phenotypic plasticity of habitat use by three temperate eel species, Anguilla anguilla, A. japonica and A. rostrata. Mar Ecol Prog Ser 308:231–241

    Article  Google Scholar 

  • David B, Chadderton WL, Closs GP, Barry B, Markwitz A (2004) Evidence of flexible recruitment strategies in coastal populations of giant kokopu (Galaxias argenteus). Dep Conserv Sci Intern Ser 160

  • Dennenmoser S, Rogers SM, Vamosi SM (2014) Genetic population structure in prickly sculpin (Cottus asper) reflects isolation-by-environment between two life-history ecotypes. Biol J Linn Soc 113:943–957

    Article  Google Scholar 

  • Dingle H, Drake VA (2007) What is migration? Bioscience 57:113–121

    Article  Google Scholar 

  • Dodson JJ, Aubin-Horth N, Theriault V, Paez DJ (2013) The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol Rev 88:602–625

    Article  PubMed  Google Scholar 

  • Ellien C, Valade P, Bosmans J, Taillebois L, Teichert N, Keith P (2011) Influence of salinity on larval development of Sicyopterus lagocephalus (Pallas, 1770) (Gobioidei). Cybium 35:381–390

    Google Scholar 

  • Eschmeyer WN (2015) Catalog of fishes: genera, species, references. Electronic version. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

  • Feutry P, Keith P, Pecheyran C, Claverie F, Robinet T (2011) Evidence of diadromy in the French Polynesian Kuhlia malo (Teleostei: Percoidei) inferred from otolith microchemistry analysis. Ecol Freshw Fish 20:636–645

    Article  Google Scholar 

  • Feutry P, Tabouret H, Maeda K, Pecheyran C, Keith P (2012) Diadromous life cycle and behavioural plasticity in freshwater and estuarine Kuhliidae species (Teleostei) revealed by otolith microchemistry. Aquat Biol 15:195–204

    Article  Google Scholar 

  • Feutry P, Castelin M, Ovenden JR, Dettai A, Robinet T, Cruaud C et al (2013) Evolution of diadromy in fish: insights from a tropical genus (Kuhlia species). Am Nat 181:52–63

    Article  PubMed  Google Scholar 

  • Fitzsimons JM, Parham JE, Nishimoto RT (2002) Similarities in behavioral ecology among amphidromous and catadromous fishes on the oceanic islands of Hawai’i and Guam. Environ Biol Fish 65:123–129

    Article  Google Scholar 

  • Froese R, Pauly D (2015) FishBase, vol 2014, 11/2014 edn. World Wide Web electronic publication. www.fishbase.org

  • Goto A (1986) Movement and population-size of the river sculpin Cottus hangiongensis in the Daitobetsu River of Southern Hokkaido. Jpn J Ichthyol 32:421–430

    Google Scholar 

  • Goto A, Arai T (2003) Migratory histories of three types of Cottus pollux (small-egg, middle-egg, and large-egg types) as revealed by otolith microchemistry. Ichthyol Res 50:67–72

    Article  Google Scholar 

  • Goto A, Arai T (2006) Diverse migratory histories of Japanese Trachidermus and Cottus species (Cottidae) as inferred from otolith microchemistry. J Fish Biol 68:1731–1741

    Article  Google Scholar 

  • Goto A, Yokoyama R, Yamada M (2002) A fluvial population of Cottus pollux (middle-egg type) from the Honmyo River, Kyushu Island, Japan. Ichthyol Res 49:318–323

    Article  Google Scholar 

  • Goto A, Yokoyama R, Sideleva VG (2015) Evolutionary diversification in freshwater sculpins (Cottoidea): a review of two major adaptive radiations. Environ Biol Fish 98:307–335

    Article  Google Scholar 

  • Guelinckx J, Maes J, De Brabandere L, Dehairs F, Ollevier F (2006) Migration dynamics of clupeoids in the Schelde estuary: a stable isotope approach. Estuar Coast Shelf Sci 66:612–623

    Article  Google Scholar 

  • Hammer MP, Adams M, Unmack PJ, Walker KF (2007) A rethink on Retropinna: conservation implications of new taxa and significant genetic sub-structure in Australian smelts (Pisces: Retropinnidae). Mar Freshw Res 58(4):327–341

    Article  CAS  Google Scholar 

  • Hicks AS (2012) Facultative amphidromy in galaxiids and bullies: the science, ecology, and managment implications. Ph.D., University of Otago

  • Hicks AS, Barbee NC, Swearer SE, Downes BJ (2010a) Estuarine geomorphology and low salinity requirement for fertilisation influence spawning site location in the diadromous fish, Galaxias maculatus. Mar Freshw Res 61:1252–1258

    Article  CAS  Google Scholar 

  • Hicks AS, Closs GP, Swearer SE (2010b) Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: a multi-element approach for tracking diadromous migrations. J Exp Mar Biol Ecol 394:86–97

    Article  Google Scholar 

  • Hogan JD, Blum MJ, Gilliam JF, Bickford N, McIntyre PB (2014) Consequences of alternative dispersal strategies in a putatively amphidromous fish. Ecology 95:2397–2408

    Article  Google Scholar 

  • Huey JA, Crook DA, Macdonald JI, Schmidt DJ, Marshall JC, Balcombe SR et al (2014) Is variable connectivity among populations of a continental gobiid fish driven by local adaptation or passive dispersal? Freshw Biol 59:1672–1686

    Article  CAS  Google Scholar 

  • Hughes JM, Schmidt DJ, Macdonald JI, Huey JA, Crook DA (2014) Low interbasin connectivity in a facultatively diadromous fish: evidence from genetics and otolith chemistry. Mol Ecol 23:1000–1013

    Article  CAS  PubMed  Google Scholar 

  • Humphries P, Lake PS (2000) Fish larvae and the management of regulated rivers. Regul River 16:421–432

    Article  Google Scholar 

  • Iguchi K, Mizuno N (1999) Early starvation limits survival in amphidromous fishes. J Fish Biol 54:705–712

    Article  Google Scholar 

  • Iida M, Watanabe S, Yamada Y, Lord C, Keith P, Tsukamoto K (2010) Survival and behavioral characteristics of amphidromous goby larvae of Sicyopterus japonicus (Tanaka, 1909) during their downstream migration. J Exp Mar Biol Ecol 383:17–22

    Article  Google Scholar 

  • Jarvis MG, Closs GP (2015) Larval drift of amphidromous Gobiomorphus spp. in a New Zealand coastal stream: a critical spatial and temporal window for protection. N Z J Mar Freshw Res 49:439–447

    Article  CAS  Google Scholar 

  • Jellyman DJ, Sagar PM, Glova GJ, Sykes JRE (2000) Age, growth, and movements of giant bullies (Gobiomorphus gobioides) in the Kakanui River estuary, South Island, New Zealand. N Z J Mar Freshw Res 34:523–530

    Article  Google Scholar 

  • Jonsson B, Jonsson N (1993) Partial migration-niche shift versus sexual-maturation in fishes. Rev Fish Biol Fisheries 3:348–365

    Article  Google Scholar 

  • Joy MK, Death RG (2004) Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural networks. Freshw Biol 49:1036–1052

    Article  Google Scholar 

  • Kano Y, Iida M, Tetsuka K, Saitoh T, Kato F, Sato T et al (2014) Effect of waterfalls on fluvial fish distribution and landlocked Rhinogobius brunneus populations on Yakushima Island, Japan. Ichthyol Res 61:305–316

    Article  Google Scholar 

  • Kawakami T, Tachihara K (2011) Dispersal of land-locked larval Ryukyu-ayu, Plecoglossus altivelis ryukyuensis, in the Fukuji Reservoir, Okinawa Island. Cybium 35:337–343

    Google Scholar 

  • Kawanabi H, Mizuno N, Hosoya K (2001) Freshwater fishes of Japan. Yamatokeikokusha Press, Tokyo

    Google Scholar 

  • Keith P (2003) Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and the Caribbean regions. J Fish Biol 63:831–847

    Article  Google Scholar 

  • Keith P, Lord C (2011) Tropical freshwater gobies: amphidromy as a life cycle. In: Patzner RA, Van Tassell JL, Kovacic M, Kapoor BG (eds) The biology of gobies. Science Publishers Inc., New Hampshire, pp 243–277

    Chapter  Google Scholar 

  • Keith P, Marquet G (2006) Stenogobius (Insularigobius) keletaona, a new species of freshwater goby from Futuna island (Teleostei: Gobiidae). Cybium 30:139–143

    Google Scholar 

  • Keith P, Marquet G, Taillebois L (2011) Discovery of the freshwater genus Sicyopus (Teleostei: Gobioidei: Sicydiinae) in Madagascar, with a description of a new species and comments on regional dispersal. J Nat Hist 45:2725–2746

    Article  Google Scholar 

  • Keith P, Hadiaty R, Hubert N, Busson F, Lord C (2014a) Three new species of Lentipes from Indonesia (Gobiidae). Cybium 38:133–146

    Google Scholar 

  • Keith P, Hadiaty R, Busson F, Hubert N (2014b) A new species of Sicyopus (Gobiidae) from Java and Bali. Cybium 38:173–178

    Google Scholar 

  • Kido MH, Heacock DE (1992) The spawning ecology of ‘o‘opu nakea (Awaous stamineus) in Wainiha River and other selected north shore Kaua‘i rivers. In: Devick WS (ed) Proceedings of the new directions in research, management, and conservation of hawaiian freshwater stream ecosystems, pp 142–157

  • King AJ, Humphries P, McCasker NG (2013) Reproduction and early life history. In: Humphries P, Walker K (eds) Ecology of Australian freshwater fishes. CSIRO Publishing, Collingwood

    Google Scholar 

  • Kondo M, Maeda K, Hirashima K, Tachihara K (2013) Comparative larval development of three amphidromous Rhinogobius species, making reference to their habitat preferences and migration biology. Mar Freshw Res 64:249–266

    Article  Google Scholar 

  • Koster WM, Dawson DR, Crook DA (2013) Downstream spawning migration by the amphidromous Australian grayling (Prototroctes maraena) in a coastal river in south-eastern Australia. Mar Freshw Res 64:31–41

    Article  Google Scholar 

  • Lack D (1968) Bird migration and natural selection. Oikos 19:1–9

    Article  Google Scholar 

  • Larson HK (2010) A review of the gobiid fish genus Redigobius (Teleostei: Gobionellinae), with descriptions of two new species. Ichthyol Explor Fres 21:123–191

    Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom DP, Blum MJ, Walter RP, Gagne RB, Gilliam JF (2012) Molecular and Morphological Evidence of Distinct Evolutionary Lineages of Awaous guamensis in Hawai’i and Guam. Copeia 2012:293–300

    Article  Google Scholar 

  • Ling N, Gleeson DM, Willis KJ, Binzegger SU (2001) Creating and destroying species: the ‘new’ biodiversity and evolutionarily significant units among New Zealand’s galaxiid fishes. J Fish Biol 59:209–222

    Google Scholar 

  • Lord C, Tabouret H, Claverie F, Pecheyran C, Keith P (2011) Femtosecond laser ablation ICP-MS measurement of otolith Sr: Ca and Ba: Ca composition reveal differential use of freshwater habitats for three amphidromous Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species. J Fish Biol 79:1304–1321

    Article  CAS  PubMed  Google Scholar 

  • McAllister DE, Lindsey CC (1961) Systematics of the freshwater sculpins (Cottus) of British Columbia. Bull Natl Mus Can Contrib Zool 172:66–89

    Google Scholar 

  • McCullough DE, Roseman EF, Keeler KM, Debruyne RL, Pritt JJ, Thompson PA et al (2015) Evidence of the St. Clair-Detroit River System as a dispersal corridor and nursery habitat for transient larval burbot. Hydrobiologia 757:21–34

    Article  Google Scholar 

  • McDowall RM (1971) Fishes of family Aplochitonidae. J R Soc N Z 1:31–52

    Article  Google Scholar 

  • McDowall RM (1988) Diadromy in fishes: migration between freshwater and marine environments. Croom Helm, London

    Google Scholar 

  • McDowall RM (1990) New Zealand freshwater fishes: a natural history and guide. Heinemann Reed, Auckland

    Google Scholar 

  • McDowall RM (1992) Diadromy—origins and definitions of terminology. Copeia 1992:248–251

    Article  Google Scholar 

  • McDowall RM (1997) The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Rev Fish Biol Fisheries 7:443–462

    Article  Google Scholar 

  • McDowall RM (2000) Biogeography of the New Zealand torrentfish, Cheimarrichthys fosteri (Teleostei: Pinguipedidae): a distribution driven mostly by ecology and behaviour. Environ Biol Fish 58:119–131

    Article  Google Scholar 

  • McDowall RM (2007) On amphidromy, a distinct form of diadromy in aquatic organisms. Fish Fish 8:1–13

    Article  Google Scholar 

  • McDowall RM (2009) Early hatch: a strategy for safe downstream larval transport in amphidromous gobies. Rev Fish Biol Fisheries 19:1–8

    Article  Google Scholar 

  • McDowall RM (2010) Why be amphidromous: expatrial dispersal and the place of source and sink population dynamics? Rev Fish Biol Fisheries 20:87–100

    Article  Google Scholar 

  • McDowall RM, Allibone RM, Chadderton WL (2005) Falkland islands freshwater fishes: a natural history. Falklands Conservation, London

    Google Scholar 

  • Miles NG, Walsh C, Butler G, Ueda H, West RJ (2014) Australian diadromous fishes—challenges and solutions for understanding migrations in the 21st century. Mar Freshw Res 65:12–24

    Google Scholar 

  • Miller MJ (2016) Life histories of catadromous fishes. In: Morais P, Daverat F (eds) An introduction to fish migration. CRC Press, Boca Raton

    Google Scholar 

  • Morais P, Dias E, Babaluk J, Antunes C (2011) The migration patterns of the European flounder Platichthys flesus (Linnaeus, 1758) (Pleuronectidae, Pisces) at the southern limit of its distribution range: ecological implications and fishery management. J Sea Res 65:235–246

    Article  Google Scholar 

  • Morgan DL (2003) Distribution and biology of Galaxias truttaceus (Galaxiidae) in south-western Australia, including first evidence of parasitism of fishes in Western Australia by Ligula intestinalis (Cestoda). Environ Biol Fish 66:155–167

    Article  Google Scholar 

  • Murphy CA, Cowan JH (2007) Production, marine larval retention or dispersal, and recruitment of amphidromous Hawaiian gobioids: issues and implications. Bish Mus Bull Cult Environ Stud 3:63–74

    Google Scholar 

  • Myers GA (1949) Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia 1949:89–97

    Article  Google Scholar 

  • Nordlie FG (2012) Life-history characteristics of eleotrid fishes of the western hemisphere, and perils of life in a vanishing environment. Rev Fish Biol Fisheries 22:189–224

    Article  Google Scholar 

  • Ohara K, Hotta M, Takahashi D, Asahida T, Ida H, Umino T (2009) Use of microsatellite DNA and otolith Sr: Ca ratios to infer genetic relationships and migration history of four morphotypes of Rhinogobius sp. OR. Ichthyol Res 56:373–379

    Article  Google Scholar 

  • Ovenden JR, White RWG, Adams M (1993) Mitochondrial and allozyme gentics of 2 Tasmanian galaxiids (Galaxias auratus and G. tanycephalus, Pisces, Galaxiidae) with restricted and lacustrine distributions. Heredity 70:223–230

    Article  Google Scholar 

  • Patzner R, Van Tassel JL, Kovacic M, Kapoor BG (2011) The biology of gobies. CRC Press, Hoboken

    Google Scholar 

  • Pollard DA (1972) The biology of a landlocked form of the normally catadromous salmoniform fish Galaxias maculatus (Jenyns) III.* Structure of the gonads. Aust J Mar Freshw Res 23:17–38

    Article  Google Scholar 

  • Potter IC, Tweedley JR, Elliott M, Whitfield AK (2015) The ways in which fish use estuaries: a refinement and expansion of the guild approach. Fish Fish 16:230–239

    Article  Google Scholar 

  • Radtke RL, Kinzie RA (1996) Evidence of a marine larval stage in endemic Hawaiian stream gobies from isolated high-elevation locations. T Am Fish Soc 125:613–621

    Article  Google Scholar 

  • Riede K (2004) Global Register of migratory species–from global to regional scales. Final report of the R&D project 80805-0811. Federal Agency for Nature Conservation, Bonn

  • Scrimgeour GJ, Eldon GA (1989) Aspects of the reproductive biology of torrentfish, Cheimarrichthys fosteri, in 2 braided river Canterbury, New Zealand. N Z J Mar Freshw Res 23:19–25

    Article  Google Scholar 

  • Shen KN, Tzeng WN (2008) Reproductive strategy and recruitment dynamics of amphidromous goby Sicyopterus japonicus as revealed by otolith microstructure. J Fish Biol 73:2497–2512

    Article  Google Scholar 

  • Shen KN, Lee YC, Tzeng WN (1998) Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zool Stud 37:322–329

    Google Scholar 

  • Shiao JC, Tzeng CS, Li PC, Bell KNI (2015) Upstream migration and marine early life history of amphidromous gobies inferred from otolith increments and microchemistry. Environ Biol Fish 98:933–950

    Article  Google Scholar 

  • Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative overview. Q Rev Biol 79:241–277

    Article  PubMed  Google Scholar 

  • Sih A, Cote J, Evans M, Fogarty S, Pruitt J (2012) Ecological implications of behavioural syndromes. Ecol Lett 15:278–289

    Article  PubMed  Google Scholar 

  • Smith WE, Kwak TJ (2014) Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics. J Fish Biol 84:913–928

    Article  CAS  PubMed  Google Scholar 

  • Sorensen PW, Hobson KA (2005) Stable isotope analysis of amphidromous Hawaiian gobies suggests their larvae spend a substantial period of time in freshwater river plumes. Environ Biol Fish 74:31–42

    Article  Google Scholar 

  • Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Tabouret H, Lord C, Bareille G, Pecheyran C, Monti D, Keith P (2011) Otolith microchemistry in Sicydium punctatum: indices of environmental condition changes after recruitment. Aquat Living Resour 24:369–378

    Article  Google Scholar 

  • Taillebois L, Castelin M, Lord C, Chabarria R, Dettai A, Keith P (2014) New Sicydiinae phylogeny (Teleostei: Gobioidei) inferred from mitochondrial and nuclear genes: insights on systematics and ancestral areas. Mol Phylogene Evol 70:260–271

    Article  Google Scholar 

  • Takeshima H, Iguchi K, Nishida M (2009) Ayu (Plecoglossus altivelis) in a contact zone between amphidromous and landlocked forms: genetic analyses of populations in the Yodo River system. Zool Sci 26:536–542

    Article  PubMed  Google Scholar 

  • Taylor MJ, Graynoth E, James GD (2000) Abundance and daytime vertical distribution of planktonic fish larvae in an oligotrophic South Island lake. Hydrobiologia 421:41–46

    Article  Google Scholar 

  • Tsukamoto K, Uchida K (1992) Migration mechanism of the ayu. In: Ilyichev VI, Anikiev VV (eds). Oceanic and anthropogenic controls of life in the Pacific Ocean, vol 21. Kluwer Academic Publisher, Netherlands, pp 145–172

    Chapter  Google Scholar 

  • Tsukamoto K, Nakai I, Tesch WV (1998) Do all freshwater eels migrate? Nature 396:635–636

    Article  CAS  Google Scholar 

  • Tsunagawa T, Arai T (2008) Flexible migration of Japanese freshwater gobies Rhinogobius spp. as revealed by otolith Sr: Ca ratios. J Fish Biol 73:2421–2433

    Article  Google Scholar 

  • Tsunagawa T, Arai T (2009) Migration diversity of the freshwater goby Rhinogobius sp BI, as revealed by otolith Sr: Ca ratios. Aquat Biol 5:187–194

    Article  Google Scholar 

  • Tsunagawa T, Arai T (2011) Migratory history of the freshwater goby Rhinogobius sp CB in Japan. Ecol Freshw Fish 20:33–41

    Article  Google Scholar 

  • Tsunagawa T, Suzuki T, Arai T (2010) Migratory history of Rhinogobius sp OR morphotype “Shimahire” as revealed by otolith Sr: Ca ratios. Ichthyol Res 57:10–15

    Article  Google Scholar 

  • Valade P, Lord C, Grondin H, Bosc P, Taillebois L, Iida M, Tsukamoto K, Keith P (2009) Early life history and description of larval stages of an amphidromous goby, Sicyopterus lagocephalus (Gobioidei: Sicydiinae). Cybium 33:309–319

    Google Scholar 

  • Walsh CT, Gray CA, West RJ, Williams LFG (2011) Reproductive biology and spawning strategy of the catadromous percichthyid, Macquaria colonorum (Gunther, 1863). Environ Biol Fish 91:471–486

    Article  Google Scholar 

  • Walsh CT, Reinfelds IV, Gray CA, West RJ, van der Meulen DE, Craig JR (2012) Seasonal residency and movement patterns of two co-occurring catadromous percichthyids within a south-eastern Australian river. Ecol Freshw Fish 21:145–159

    Article  Google Scholar 

  • Ward FJ, Northcote TG, Boubee JAT (2005) The New Zealand common smelt: biology and ecology. J Fish Biol 66:1–32

    Article  Google Scholar 

  • Ward FJ, Boubee JAT, Meredith AS, Northcote TG (1989) Characteristics of common smelt, Retropinna retropinna (Richardson), of the Waikato River system. N Z J Mar Freshw Res 23:345–355

    Article  Google Scholar 

  • Watanabe S, Iida M, Lord C, Keith P, Tsukamoto K (2014) Tropical and temperate freshwater amphidromy: a comparison between life history characteristics of Sicydiinae, ayu, sculpins and galaxiids. Rev Fish Biol Fisheries 24:1–14

    Article  Google Scholar 

  • Waters JM, Rowe DL, Burridge CP, Wallis GP (2010) Gene trees versus species trees: reassessing life-history evolution in a freshwater fish radiation. Syst Biol 59:504–517

    Article  CAS  PubMed  Google Scholar 

  • Wylie MJ, Closs GP, Damsteegt EL, Lokman PM (2014) Effects of salinity and temperature on artificial cultivation and early ontogeny of giant kokopu, Galaxias argenteus (Gmelin 1789). Aquac Res 47:1472–1480

    Article  CAS  Google Scholar 

  • Yamasaki YY, Nishida M, Suzuki T, Mukai T, Watanabe K (2015) Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 90:20–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MW initially conceived the concept of a landscape-mediated amphidromy-catadromy continuum during discussions with GPC. During the production of this review, the same connections were later made by JMA resulting in further concept refinement by all three authors and the conclusions presented in this review. We would like to thank Matt Jarvis and Mark Kaemingk for providing valuable comments on early drafts of this manuscript. Funding for this study was provided by the University of Otago; JMA* and MW were funded by the University of Otago Doctoral Scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Augspurger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augspurger, J.M., Warburton, M. & Closs, G.P. Life-history plasticity in amphidromous and catadromous fishes: a continuum of strategies. Rev Fish Biol Fisheries 27, 177–192 (2017). https://doi.org/10.1007/s11160-016-9463-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-016-9463-9

Keywords

Navigation