Skip to main content

Advertisement

Log in

Effects of climate change on four New England groundfish species

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Multiple groundfish stocks in New England remain depleted despite management measures that have been effective elsewhere. A growing body of research suggests that environmental change driven by increasing concentrations of carbon dioxide in the atmosphere and ocean is unfolding more rapidly in New England than elsewhere, and is an important factor in the failure of these stocks to respond to management. We reviewed research on effects of changes in temperature, salinity, dissolved oxygen, pH, and ocean currents on pelagic life stages, post-settlement life stages, and reproduction of four species in the New England groundfish fishery: Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus), winter flounder (Pseudopleuronectes americanus), and yellowtail flounder (Limanda ferruginea). The volume of research on cod was nearly equal to that on the other three species combined. Similarly, many more studies examined effects of temperature than other factors. The majority of studies suggest adverse outcomes, with less evidence for mixed or positive effects. However, for all of the factors other than temperature, there are more knowledge gaps than known effects. Importantly, most work to date examines impacts in isolation, but effects might combine in nonlinear ways and cause stronger reductions in stock productivity than expected. Management strategies will need to account for known effects, nonlinear interactions, and uncertainties if fisheries in New England are to adapt to environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ames EP (1997) Cod and haddock spawning grounds in the Gulf of Maine: from Grand Manan Channel to Ipswich Bay. The Island Institute, Rockland

    Google Scholar 

  • Ames EP (2004) Atlantic cod stock structure in the Gulf of Maine. Fisheries 29:10–28

    Article  Google Scholar 

  • Ames EP, Lichter J (2013) Gadids and alewives: structure within complexity in the Gulf of Maine. Fish Res 141:70–78

    Article  Google Scholar 

  • Anderson CNK, Hsieh CH, Sandin SA, Hewitt R, Hollowed A, Beddington J, May RM, Sugihara G (2008) Why fishing magnifies fluctuations in fish abundance. Nature 452:835–839

    Article  CAS  PubMed  Google Scholar 

  • Araujo JN, Bundy A (2012) Effects of environmental change, fisheries and trophodynamics on the ecosystem of the western Scotian Shelf, Canada. Mar Ecol Prog Ser 464:51–67. doi:10.3354/meps09792

    Article  Google Scholar 

  • Balch WM, Drapeau DT, Bowler BC, Huntington TG (2012) Step-changes in the physical, chemical and biological characteristics of the Gulf of Maine, as documented by the GNATS time series. Mar Ecol Prog Ser 450:11–35

    Article  CAS  Google Scholar 

  • Baudron AR, Needle CL, Marshall CT (2011) Implications of a warming North Sea for the growth of haddock Melanogrammus aeglefinus. J Fish Biol 78:1874–1889. doi:10.1111/j.1095-8649.2011.02940.x

    Article  CAS  PubMed  Google Scholar 

  • Beaugrand G (2004) The North Sea regime shift: evidence, causes, mechanisms and consequences. Prog Oceanogr 60:245–262. doi:10.1016/j.pocean.2004.02.018

    Article  Google Scholar 

  • Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694. doi:10.1126/science.1071329

    Article  CAS  PubMed  Google Scholar 

  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664. doi:10.1038/nature02164

    Article  CAS  PubMed  Google Scholar 

  • Bejda AJ, Phelan BA, Studholme AL (1992) The effect of dissolved-oxygen on the growth of young-of-the-year winter flounder, Pseudopleuronectes americanus. Environ Biol Fish 34:321–327. doi:10.1007/bf00004780

    Article  Google Scholar 

  • Bell RJ, Hare JA, Manderson JP, Richardson DE (2014) Externally driven changes in the abundance of summer and winter flounder. ICES J Mar Sci. doi:10.1093/icesjms/fsu069

    Google Scholar 

  • Benoit HP, Pepin P (1999) Interaction of rearing temperature and maternal influence on egg development rates and larval size at hatch in yellowtail flounder (Pleuronectes ferrugineus). Can J Fish Aquat Sci 56:785–794. doi:10.1139/cjfas-56-5-785

    Article  Google Scholar 

  • Berkeley SA, Hixon MA, Larson RJ, Love MS (2004) Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29:23–32

    Article  Google Scholar 

  • Beverton RJH (1995) Spatial limitation of population size; the concentration hypothesis. Neth J Sea Res 34:1–6. doi:10.1016/0077-7579(95)90010-1

    Article  Google Scholar 

  • Blaxter JHS (1986) Develpoment of sense-organs and behavior of teleost larvae with special reference to feeding and predator avoidance. Trans Am Fish Soc 115:98–114

    Article  Google Scholar 

  • Boucher JM, Chen CS, Sun YF, Beardsley RC (2013) Effects of interannual environmental variability on the transport-retention dynamics in haddock Melanogrammus aeglefinus larvae on Georges Bank. Mar Ecol Prog Ser 487:201–215. doi:10.3354/meps10462

    Article  Google Scholar 

  • Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596. doi:10.1038/nature09268

    Article  CAS  PubMed  Google Scholar 

  • Brander KM (1994) Patterns of distirbution, spawning, and growth in Northern Atlantic cod—the utility of inter-regional comparisons. In: Jakobsson J, Atthorsson OS, Beverton RJH et al (eds) Cod and climate change—proceedings of a symposium. ICES Mar Sci Symp 198:406–413

  • Brander KM (1995) The effect of temperature ponorowth of Atlantic cod (Gadus morhua L.). ICES J Mar Sci 52:1–10. doi:10.1016/1054-3139(95)80010-7

    Article  Google Scholar 

  • Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402. doi:10.1016/j.jmarsys.2008.12.015

    Article  Google Scholar 

  • Brodie WB, Walsh SJ, Atkinson DB (1998) The effect of stock abundance on range contraction of yellowtail flounder (Pleuronectes ferruginea) on the Grand Bank of Newfoundland in the Northwest Atlantic from 1975 to 1995. J Sea Res 39:139–152. doi:10.1016/s1385-1101(97)00056-7

    Article  Google Scholar 

  • Brodie WB, Walsh SJ, Parsons DM (2010) An evaluation of the collapse and recovery of the yellowtail flounder (Limanda ferruginea) stock on the Grand Bank. ICES J Mar Sci 67:1887–1895. doi:10.1093/icesjms/fsq121

    Article  Google Scholar 

  • Brodziak J, O’Brien L (2005) Do environmental factors affect recruits per spawner anomalies of New England groundfish? ICES J Mar Sci 62:1394–1407. doi:10.1016/j.icesjms.2005.04.019

    Article  Google Scholar 

  • Buckley J (1989) Species profiles: life histories and environmental requirements of coastal fish and invertebrates (North Atlantic)—winter flounder. US Fish and Wildlife Service Biological Reports, vol 82(11.87)/TR EL-82-4

  • Buckley LJ, Smigielski AS, Halavik TA, Laurence GC (1990) Effects of water temperature on size and biochemical composition of winter flounder Pseudopleuronectes americanus at hatching and feeding initiation. Fish Bull 88:419–428

    Google Scholar 

  • Buckley LJ, Lough RG, Mountain D (2010) Seasonal trends in mortality and growth of cod and haddock larvae result in an optimal window for survival. Mar Ecol Prog Ser 405:57–69. doi:10.3354/meps08503

    Article  Google Scholar 

  • Bundy A, Coll M, Shannon LJ, Shin Y (2012) Global assessments of the status of marine exploited ecosystems and their management: what more is needed? Curr Opin Environ Sustain 4:292–299

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365. doi:10.1038/425365a

    Article  CAS  PubMed  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res C Oceans. doi:10.1029/2004jc002671

    Google Scholar 

  • Capotondi A, Alexander MA, Bond NA, Curchitser EN, Scott JD (2012) Enhanced upper ocean stratification with climate change in the CMIP3 models. J Geophys Res C Oceans. doi:10.1029/2011jc007409

    Google Scholar 

  • Cargnelli LM, Griesbach SJ, Berrien PL, Morse WM, Johnson DL (1999) Essential fish habitat source document: haddock, Melanogrammus aeglefinus, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-128

  • Choi JS, Frank KT, Leggett WC, Drinkwater K (2004) Transition to an alternate state in a continental shelf ecosystem. Can J Fish Aquat Sci 61:505–510. doi:10.1139/f04-079

    Article  Google Scholar 

  • Churchill JH, Runge J, Chen CS (2011) Processes controlling retention of spring-spawned Atlantic cod (Gadus morhua) in the western Gulf of Maine and their relationship to an index of recruitment success. Fish Oceanogr 20:32–46. doi:10.1111/j.1365-2419.2010.00563.x

    Article  Google Scholar 

  • Claireaux G, Dutil JD (1992) Physiological response of the Atlantic cod (Gadus morhua) to hypoxia at various environmental salinities. J Exp Biol 163:97–118

    Google Scholar 

  • Collette BB, Klein-MacPhee G (2002) Fishes of the Gulf of Maine, 3rd edn. Smithsonian Institute Press, Washington, DC

    Google Scholar 

  • Collie JS, Wood AD, Jeffries HP (2008) Long-term shifts in the species composition of a coastal fish community. Can J Fish Aquat Sci 65:1352–1365

    Article  Google Scholar 

  • Collie JS, Botsford LW, Hastings A, Kaplan IC, Largier JL, Livingston PA, Plaganyi E, Rose KA, Wells BK, Werner FE (2014) Ecosystem models for fisheries management: finding the sweet spot. Fish Fish 17:101–125. doi:10.1111/faf.12093

    Article  Google Scholar 

  • Colton JB (1959) A field observation of mortality of marine fish larvae due to warming. Limnol Oceanogr 4:219–222. doi:10.4319/lo.1959.4.2.0219

    Article  Google Scholar 

  • Costello C, Gaines SD, Lynham J (2008) Can catch shares prevent fisheries collapse? Science 321:1678–1681. doi:10.1126/science.1159478

    Article  CAS  PubMed  Google Scholar 

  • Crawford RE, Carey CG (1985) Retention of winter flounder larvae within a Rhode Island salt pond. Estuaries 8:217–227. doi:10.2307/1352202

    Article  Google Scholar 

  • Crowder LB, Osherenko G, Young OR, Airame S, Norse EA, Baron N, Day JC, Bouvere F, Ehler CN, Halpern BS, Langdon SJ, McLeod KL, Ogden JC, Peach RE, Rosenberg AA, Wilson JA (2006) Resolving mismatches in US ocean governance. Science 313:617–618

    Article  CAS  PubMed  Google Scholar 

  • Davenport J, Lonning S, Kjorsvik E (1981) Osmotic and structural changes during early development of eggs and larvae of the cod, Gadus morhua L. J Fish Biol 19:317–331. doi:10.1111/j.1095-8649.1981.tb05835.x

    Article  Google Scholar 

  • DeCelles GR, Cadrin SX (2010) Movement patterns of winter flounder (Pseudopleuronectes americanus) in the southern Gulf of Maine: observations with the use of passive acoustic telemetry. Fish Bull 108:408–419

    Google Scholar 

  • Deutsch C, Ferrel A, Seibel B, Pörtner HO, Huey RB (2015) Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–1135. doi:10.1126/science.aaa1605

    Article  CAS  PubMed  Google Scholar 

  • Dickie LM, McCracken FD (1955) Isopleth diagrams to predict equilibrium yileds of a small flounder fishery. J Fish Res Board Can 12:187–209

    Article  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37. doi:10.1146/annurev-marine-041911-111611

    Article  PubMed  Google Scholar 

  • Drinkwater KF (2002) A review of the role of climate variability in the decline of northern cod. In: McGinn NA (ed) Fisheries in a changing climate. Am Fish Soc Symp 32:113–129

  • Dulvy NK, Rogers SI, Jennings S, Stelzenmuller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45:1029–1039. doi:10.1111/j.1365-2664.2008.01488.x

    Article  Google Scholar 

  • Dutil JD, Brander K (2003) Comparing productivity of North Atlantic cod (Gadus morhua) stocks and limits to growth production. Fish Oceanogr 12:502–512. doi:10.1046/j.1365-2419.2003.00243.x

    Article  Google Scholar 

  • Dutil JD, Munro J, Audet C, Besner M (1992) Seasonal variation in the physiological response of Atlantic cod (Gadus morhua) to low salinity. Can J Fish Aquat Sci 49:1149–1156. doi:10.1139/f92-128

    Article  Google Scholar 

  • Eriksen E, Ingvaldsen R, Stiansen JE, Johansen GO (2012) Thermal habitat for 0-group fish in the Barents Sea; how climate variability impacts their density, length, and geographic distribution. ICES J Mar Sci 69:870–879. doi:10.1093/icesjms/fsr210

    Article  Google Scholar 

  • Essington TE (2010) Ecological indicators display reduced variation in North American catch share fisheries. Proc Natl Acad Sci USA 107:754–759. doi:10.1073/pnas.0907252107

    Article  CAS  PubMed  Google Scholar 

  • Essington TE, Melnychuk MC, Branch TA, Heppell SS, Jensen OP, Link JS, Martell SJD, Parma AM, Pope JG, Smith ADM (2012) Catch shares, fisheries, and ecological stewardship: a comparative analysis of resource responses to a rights-based policy instrument. Conserv Lett 5:186–195. doi:10.1111/j.1755-263X.2012.00226.x

    Article  Google Scholar 

  • Fahay MP, Berrien PL, Johnson DL, Morse WM (1999) Essential fish habitat source document: Atlantic cod, Gadus morhua, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-124

  • Fairchild EA, Siceloff L, Howell WH, Hoffman B, Armstrong MP (2013) Coastal spawning by winter flounder and a reassessment of essential fish habitat in the Gulf of Maine. Fish Res 141:118–129

    Article  Google Scholar 

  • Feeley RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47

    Article  Google Scholar 

  • Fernandez IJ, Schmitt CV, Birkel SD, Stancioff E, Pershing AJ, Kelley JT, Runge JA, Jacobson GL, Mayewski PA (2015) Maine’s climate future: 2015 update. University of Maine, Orono, p 24

    Google Scholar 

  • Fletcher CR (1978a) Osmotic and ionic regulation in cod (Gadus callarias L): 1. Water balance. J Comp Physiol 124:149–155

    Article  CAS  Google Scholar 

  • Fletcher CR (1978b) Osmotic and ionic regulation in cod (Gadus callarias L): 2. Salt balance. J Comp Physiol 124:157–168

    Article  CAS  Google Scholar 

  • Fogarty M, Incze L, Hayhoe K, Mountain D, Manning J (2008) Potential climate change impacts on Atlantic cod (Gadus morhua) off the northeastern USA. Mitigation Adapt Strateg Glob Chang 13:453–466. doi:10.1007/s11027-007-9131-4

    Article  Google Scholar 

  • Fogarty MJ, Overholtz WJ, Link JS (2012) Aggregate surplus production models for demersal fishery resources of the Gulf of Maine. Mar Ecol Prog Ser 459:247–258

    Article  Google Scholar 

  • Fonds M, Cronie R, Vethaak AD, Vanderpuyl P (1992) Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth J Sea Res 29:127–143. doi:10.1016/0077-7579(92)90014-6

    Article  Google Scholar 

  • Frank KT, Petrie B, Leggett WC, Boyce DG (2016) Large scale, synchornous variability of marine fish populations driven by commercial exploitation. Proc Nat Acad Sci USA. doi:10.1073/pnas.1602325113

    Google Scholar 

  • Friedland KD, Kane J, Hare JA, Lough RG, Fratantoni PS, Fogarty MJ, Nye JA (2013) Thermal habitat constraints on zooplankton species associated with Atlantic cod (Gadus morhua) on the US Northeast Continental Shelf. Prog Oceanogr 116:1–13. doi:10.1016/j.pocean.2013.05.011

    Article  Google Scholar 

  • Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nate Clim Change 2:42–46

    Article  CAS  Google Scholar 

  • Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6. Academic Press, pp 1–98. doi:10.1016/S1546-5098(08)60146-6

  • Garrison LP, Link JS (2000) Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J Mar Sci 57:723–730

    Article  Google Scholar 

  • Gibson RN (1994) Impact of habitat quality and quanitity on the recruitment of juvenile flatfishes. Neth J Sea Res 32:191–206. doi:10.1016/0077-7579(94)90040-x

    Article  Google Scholar 

  • Gibson MR (2013) Assessing the local population of winter flounder with a two-era biomass dynamic model: a narrower view of Southern New England. Rhode Island Division of Fish and Wildlife, Jamestown

    Google Scholar 

  • Gibson RN, Robb L (1992) The relationship between body size, sediment grain size and the burying ability of juvenile plaice, Pleuronectes platessa L. J Fish Biol 40:771–778. doi:10.1111/j.1095-8649.1992.tb02623.x

    Article  Google Scholar 

  • Grimm D, Barkhorn I, Festa D, Bonzon K, Boomhower J, Hovland V, Blau J (2012) Assessing catch shares’ effects evidence from federal United States and associated British Columbian fisheries. Mar Policy 36:644–657. doi:10.1016/j.marpol.2011.10.014

    Article  Google Scholar 

  • Gutierrez NL, Hilborn R, Defeo O (2011) Leadership, social capital and incentives promote successful fisheries. Nature 470:386–389. doi:10.1038/nature09689

    Article  CAS  PubMed  Google Scholar 

  • Hall CJ, Jordaan A, Frisk MG (2012) Centuries of anadromous forage fish loss: consequences for ecosystem connectivity and productivity. Bioscience 62:723–731

    Article  Google Scholar 

  • Hare JA, Alexander MA, Fogarty MJ, Williams EH, Scott JD (2010) Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecol App 20:452–464. doi:10.1890/08-1863.1

    Article  Google Scholar 

  • Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, Alexander MA, Scott JD, Alade L, Bell RJ, Chute AS, Curti KL, Curtis TH, Kircheis D, Kocik JF, Lucey SM, McCandless CT, Milke LM, Richardson DE, Robillard E, Walsh HJ, McManus MC, Marancik KE, Griswold CA (2016) A vulnerability assessment of fish and invertebrates to climate change on the Northeast U.S. continental shelf. PLoS ONE 11:e0146756. doi:10.1371/journal.pone.0146756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127. doi:10.1126/science.1210199

    Article  CAS  PubMed  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x

    Article  PubMed  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362

    Article  Google Scholar 

  • Herbert NA, Steffensen JF (2005) The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress. Mar Biol 147:1403–1412. doi:10.1007/s00227-005-0003-8

    Article  Google Scholar 

  • Hjort J (1914) Fluctuations in the great fisheries of Northern Europe viewed in the light of biological research. Copenhague conseil permanent international pour l’exploration de la mer. Rapports et Proces-Verbaux des Reunions 20:234

  • Hoar WS (1953) Control and timing of fish migration. Biol Rev 28:437–452. doi:10.1111/j.1469-185X.1953.tb01387.x

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. doi:10.1126/science.1189930

    Article  CAS  PubMed  Google Scholar 

  • Howe AB, Coates PG (1975) Winter flounder movements, growth, and mortality off Massachusetts. Trans Am Fish Soc 104:13–29. doi:10.1577/1548-8659(1975)104<13:wfmgam>2.0.co;2

    Article  Google Scholar 

  • Howell P, Simpson D (1994) Abundance of marine resources in relation to dissolved oxygen in Long Island Sound. Estuaries 17:394–402. doi:10.2307/1352672

    Article  Google Scholar 

  • Howell P, Howe A, Gibson M, Ayvazian S (1992) Fishery management plan for inshore stocks of winter flounder, Pleuronectes americanus. ASMFC fisheries management report 21

  • Howell PT, Molnar DR, Harris RB (1999) Juvenile winter flounder distribution by habitat type. Estuaries 22:1090–1095. doi:10.2307/1353086

    Article  Google Scholar 

  • Hsieh CH, Reiss CS, Hewitt RP, Sugihara G (2008) Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Can J Fish Aquat Sci 65:947–961

    Article  Google Scholar 

  • Huey RB, Berrigan D (2001) Temperature, demography, and ectotherm fitness. Am Nat 158:204–210

    Article  CAS  PubMed  Google Scholar 

  • Hutchings JA, Myers RA (1994) Timing of cod reproduction—interannual variability and the influence of temperature. Mar Ecol Prog Ser 108:21–31. doi:10.3354/meps108021

    Article  Google Scholar 

  • Jeffries HP, Johnson WC (1974) Seasonal distributions of bottom fishes in Narragansett Bay area—7 year variations of abundance of winter flounder (Pseudopleuronectes americanus). J Fish Res Board Can 31:1057–1066

    Article  Google Scholar 

  • Jeffries HP, Terceiro M (1985) Cycle of changing abundance in the fishes of the Narragansett Bay area. Mar Ecol Prog Ser 25:239–244. doi:10.3354/meps025239

    Article  Google Scholar 

  • Jeffries P, Keller A, Hale S (1989) Predicting winter flounder (Pseudopleuronectes americanus) catches by time-series analysis. Can J Fish Aquat Sci 46:650–659

    Article  Google Scholar 

  • Johnson DL, Morse WM, Berrien PL, Vitaliano JJ (1999) Essential fish habitat source document: yellowtail flounder, Limanda ferruginea, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-140

  • Jorgensen T (1990) Long-term changes in age at sexual maturity of Northeast Arctic cod (Gadus morhua L). ICES J Mar Sci 46:235–248

    Article  Google Scholar 

  • Keller AA, Klein-MacPhee G (2000) Impact of elevated temperature on the growth, survival, and trophic dynamics of winter flounder larvae: a mesocosm study. Can J Fish Aquat Sci 57:2382–2392. doi:10.1139/cjfas-57-12-2382

    Article  Google Scholar 

  • Kjesbu OS, Klungsoyr J, Kryvi H, Witthames PR, Walker MG (1991) Fecundity, atresia, and egg size of captive Altantic cod (Gadus morhua) in relation to proximate body composition. Can J Fish Aquat Sci 48:2333–2343. doi:10.1139/f91-274

    Article  Google Scholar 

  • Kjesbu OS, Solemdal P, Bratland P, Fonn M (1996) Variation in annual egg production in individual captive Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 53:610–620. doi:10.1139/cjfas-53-3-610

    Article  Google Scholar 

  • Kleisner KM, Fogarty MJ, McGee S, Barnett A, Fratantoni P, Greene J, Hare JA, Lucey SM, McGuire C, Odell J, Saba VS, Smith L, Weaver KJ, Pinsky ML (2016) The effects of sub-regional climate velocity on the distribution and spatial extent of marine species assemblages. PLoS ONE 11:e0149220. doi:10.1371/journal.pone.0149220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig WD (2002) Global patterns of environmental synchrony and the Moran effect. Ecography 25:283–288

    Article  Google Scholar 

  • Koester FW, Hinrichsen H-H, St. John MA, Schnack D, MacKenzie BR, Tomkiewicz J, Plikshs M (2001) Developing Baltic cod recruitment models. II. Incorporation of environmental variability and species interactions. Can J Fish Aquat Sci 58:1534–1556

    Article  Google Scholar 

  • Kovach AI, Breton TS, Berlinsky DL, Maceda L, Wirgin I (2010) Fine-scale spatial and temporal genetic structure of Atlantic cod off the Atlantic coast of the USA. Mar Ecol Prog Ser 410:177–195. doi:10.3354/meps08612

    Article  CAS  Google Scholar 

  • Kristiansen T, Drinkwater KF, Lough RG, Sundby S (2011) Recruitment variability in North Atlantic cod and match-mismatch dynamics. PLoS ONE 6:e17456. doi:10.1371/journal.pone.0017456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristiansen T, Stock C, Drinkwater KF, Curchitser EN (2014) Mechanistic insights into the effects of climate change on larval cod. Glob Change Biol 20:1559–1584. doi:10.1111/gcb.12489

    Article  Google Scholar 

  • Kritzer JP, Liu OR (2013) Fishery management strategies for addressing complex spatial structure in marine fish stocks. In: Cadrin SX, Kerr LA, Mariani S (eds) Stock identification methods, 2nd edn. Elsevier, Boston, pp 29–58

    Chapter  Google Scholar 

  • Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fish 5:131–140

    Article  Google Scholar 

  • Kritzer JP, Delucia M, Greene E, Shumway C, Topolski MF, Thomas-Blate J, Chiarella L, Davy KB, Smith K (2016) The importance of benthic habitats for coastal fisheries. Bioscience. doi:10.1093/biosci/biw014

    Google Scholar 

  • Krivobok MN, Tokareva GI (1972) Dynamics of weight variations of the body and separate organs of Baltic cod during the maturation of gonads. Trudy vses. nauchno-issled. Inst Morsk Ryb Khoz Okeanogr 85:46–55

    Google Scholar 

  • Lage C, Kuhn K, Kornfield I (2004) Genetic differentiation among Atlantic cod (Godus morhua) from Browns Bank, Georges Bank, and Nantucket Shoals. Fish Bull 102:289–297

    Google Scholar 

  • Lambert Y, Dutil JD (2000) Energetic consequences of reproduction in Atlantic cod (Gadus morhua) in relation to spawning level of somatic energy reserves. Can J Fish Aquat Sci 57:815–825. doi:10.1139/cjfas-57-4-815

    Article  Google Scholar 

  • Lambert Y, Dutil JD, Munro J (1994) Effects of intermediate and low-salinity conditions on growth rate and food conversion of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 51:1569–1576. doi:10.1139/f94-155

    Article  Google Scholar 

  • Laurence GC (1975) Laboratory growht and metabolism of winter flounder Pseudopleuronectes americanus from hatching through metamorphosis at 3 temperatures. Mar Biol 32:223–229. doi:10.1007/bf00399202

    Article  Google Scholar 

  • Laurence GC (1977) Bioenergetic model for analysis of feeding and survival potential of winter flounder, Pseudopleuronectes americanus, larvae during period from hatching to metamorphosis. Fish Bull 75:529–546

    Google Scholar 

  • Laurence GC (1978) Comparative growth, respiration and delayed feeding abilities of larval cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) as influenced by temperature during laboratory studies. Mar Biol 50:1–7. doi:10.1007/bf00390536

    Article  Google Scholar 

  • Laurence GC, Howell WH (1981) Embryology and influence of temperature and salinity on early development and survival of yellowtail flounder Limanda ferruginea. Mar Ecol Prog Ser 6:11–18. doi:10.3354/meps006011

    Article  Google Scholar 

  • Laurence GC, Rogers CA (1976) Effects of temperature and salinity on comparative embryo development and mortality or Atlantic cod (Gadus morhua L) and haddock (Melanogrammus aeglefinus L). ICES J Mar Sci 36:220–228

    Article  Google Scholar 

  • Link J, Almeida F, Valentine P, Auster P, Reid R, Vitaliano J (2005) The effects of closed areas on Georges Bank. Am Fish Soc Symp 41:345–368

    Google Scholar 

  • Lough RG (2004) Essential fish habitat source document: Atlantic cod, Gadus morhua, life history and habitat characteristics, 2nd edn. NOAA Technical Memorandum NMFS-NE 190:i–vi, 1–94

  • Lough RG, Valentine PC, Potter DC, Auditore PJ, Bolz GR, Neilson JD, Perry RI (1989) Ecology and distribution of juvenile cod and haddock in relation to sediment type and bottom currents on eastern Georges Bank. Mar Ecol Prog Ser 56:1–12. doi:10.3354/meps056001

    Article  Google Scholar 

  • MacIsaac PF, Goff GP, Speare DJ (1997) Comparison of routine oxygen consumption rates of three species of pleuronectids at three temperatures. J Appl Ichthyol 13:171–176. doi:10.1111/j.1439-0426.1997.tb00117.x

    Article  Google Scholar 

  • Manderson JP (2008) The spatial scale of phase synchrony in winter flounder (Pseudopleuronectes americanus) production increased among southern New England nurseries in the 1990s. Can J Fish Aquat Sci 65:340–351. doi:10.1139/f07-169

    Article  Google Scholar 

  • McCleod E, Salm R, Green A, Almany J (2009) Designing marine protected area networks to address the impacts of climate change. Front Ecol Environ. doi:10.1890/070211

    Google Scholar 

  • McCracken FD (1963) Seasonal movements of the winter flounder, Pseudopleuronectes americanus (Walbaum), on the Atlantic coast. J Fish Res Board Can 20:551–586

    Article  Google Scholar 

  • Melnychuk MC, Essington TE, Branch TA, Heppell SS, Jensen OP, Link JS, Martell SJD, Parma AM, Pope JG, Smith ADM (2012) Can catch share fisheries better track management targets? Fish Fish 13:267–290. doi:10.1111/j.1467-2979.2011.00429.x

    Article  Google Scholar 

  • Meng L, Powell JC, Taplin B (2001) Using winter flounder growth rates to assess habitat quality across an anthropogenic gradient in Narragansett Bay, Rhode Island. Estuaries 24:576–584. doi:10.2307/1353258

    Article  Google Scholar 

  • Mieszkowska N, Genner MJ, Hawkins SJ, Sims DW (2009) Effects of climate change and commercial fishing on Atlantic cod Gadus morhua. Adv Mar Biol 56:213–273. doi:10.1016/S0065-2881(09)56003-8

    Article  PubMed  Google Scholar 

  • Miller TJ, Herra T, Leggett WC (1995) An individual based analysis of the variability of eggs and their newly-hatching larvae of Atlantic cod (Gadus morhua) on the Scotian Shelf. Can J Fish Aquat Sci 52:1083–1093. doi:10.1139/f95-106

    Article  Google Scholar 

  • Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang F-S, Holland DS, Lehuta S, Nye JA, Sun JC, Thomas AC, Wahle RA (2013) Fisheries management in a changing climate lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26:191–195

    Article  Google Scholar 

  • Morgan MJ, Walsh SJ (1996) Tracking movements of juvenile yellowtail flounder in the nursery area on the Southern Grand Bank, NAFO Division 3LNO. NAFO SCR

  • Murawski SA (1993) Climate-change and marine fish distributions—forecasting from historical analogy. Trans Am Fish Soc 122:647–658. doi:10.1577/1548-8659(1993)122<0647:ccamfd>2.3.co;2

    Article  Google Scholar 

  • Myers RA, Cadigan NG (1993) Density-dependent juvenile mortality in marine demersal fish. Can J Fish Aquat Sci 50:1576–1590. doi:10.1139/f93-179

    Article  Google Scholar 

  • Myers RA, Drinkwater KF, Barrowman NJ, Baird JW (1993) Salinity and recruitment of Atlantic cod (Gadus morhua) in the Newfoundland region. Can J Fish Aquat Sci 50:1599–1609. doi:10.1139/f93-181

    Article  Google Scholar 

  • National Oceanographic and Atmospheric Administration [NOAA] (2015) Status of stocks 2014. Annual report to congress on the status of U.S. fisheries. http://www.fisheries.noaa.gov/sfa/publications/feature_stories/2015/status_of_stocks_2014.html. Accessed 24 Feb 2016

  • Nichols JT (1918) An abnormal winter flounder and others. Copeia 55:37–39. doi:10.2307/1436085

    Article  Google Scholar 

  • Nicolas D, Rochette S, Llope M, Licandro P (2014) Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton. PLoS ONE. doi:10.1371/journal.pone.0088447

    Google Scholar 

  • Northeast Fisheries Science Center [NEFSC] (2015) Stock assessment update of 20 Northeast groundfish stocks through 2014. http://www.nefsc.noaa.gov/publications/crd/crd1524/. Accessed 13 March 2015

  • Nummelin A, Ilicak M, Li C, Smedsrud LH (2016) Consequences of future increased Arctic runoff on Artic Ocean stratification, circulation and sea ice cover. J Geophys Res Oceans. doi:10.1002/2015JC011156

  • Nye JA, Link JS, Hare JA, Overholtz WJ (2009) Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar Ecol Prog Ser 393:111–129

    Article  Google Scholar 

  • Nye JA, Gamble RJ, Link JS (2013) The relative impact of warming and removing top predators on the Northeast US large marine biotic community. Ecol Modell 264:157–168. doi:10.1016/j.ecolmodel.2012.08.019

    Article  Google Scholar 

  • O’Brien L (1999) Factors influencing the rate of sexual maturity and the effect on spawning stock for Georges Bank and Gulf of Maine Atlantic cod Gadus morhua stocks. J Northwest Atl Fish Sci 25:179–203

    Article  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci USA 104:1266–1271. doi:10.1073/pnas.0603422104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odense P, Bordelea A, Guilbaul R (1966) Tolerance levels of cod (Gadus morhua) to low salinity. J Fish Res Board Can 23:1465–1467

    Article  Google Scholar 

  • Olla BL, Wicklund R, Wilk S (1969) Behavior of winter flounder in a natural habitat. Trans Am Fish Soc 98:717–720. doi:10.1577/1548-8659(1969)98%5B717%3ABOWFIA%5D2.0.CO%3B2

    Article  Google Scholar 

  • Ottersen G, Loeng H, Raknes A (1994) Influence of temperature variability on recruitment of cod in the Barents Sea. In: Jakobsson J, Atthorsson OS, Beverton RJH et al (eds) Cod and climate change—proceedings of a symposium. ICES Mar Sci Symp 198:471–481

  • Ottersen G, Hjermann DO, Stenseth NC (2006) Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish Oceanogr 15:230–243. doi:10.1111/j.1365-2419.2006.00404.x

    Article  Google Scholar 

  • Page FH, Frank KT (1989) Spawning time and egg stage duration in Northwest Atlantic haddock (Melanogrammus aeglefinus) stocks with emphasis on Georges and Browns Bank. Can J Fish Aquat Sci 46:68–81

    Article  Google Scholar 

  • Palmer JE, Clark SH (1979) Haddock: traditional New England foodfish. Marine resources of the Atlantic Coast, 2 edn. Atlantic State Marine Fisheries Commission, Washington, DC

  • Pearcy WG (1962) Ecology of an estuarine population of winter flounder, Pseudopleuronectes americanus (Walbaum). Bull Bingham Oceanogr Collect 17:78

    Google Scholar 

  • Peck MA, Buckley LJ, Caldarone EM, Bengtson DA (2003) Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus. Mar Ecol Prog Ser 251:233–243. doi:10.3354/meps251233

    Article  Google Scholar 

  • Pereira JJ, Goldberg R, Ziskowski JJ, Berrien P, Morse WM, Johnson DL (1999) Essential fish habitat source document: winter flounder, Pseudopleuronectes americanus, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-138

  • Pereira JJ, Schultz ET, Auster PJ (2012) Geospatial analysis of habitat use in yellowtail flounder Limanda ferruginea on Georges Bank. Mar Ecol Prog Ser 468:279–290. doi:10.3354/meps10035

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi:10.1126/science.1111322

    Article  CAS  PubMed  Google Scholar 

  • Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Le Bris A, Mills KE, Nye JA, Record NR, Scannell HA, Scott JD, Sherwood GD, Thomas AC (2015) Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809–812. doi:10.1126/science.aac9819

    Article  CAS  PubMed  Google Scholar 

  • Phelan BA (1992) Winter flounder movements in the inner New York Bight. Trans Am Fish Soc 121:777–784. doi:10.1577/1548-8659(1992)121<0777:wfmiti>2.3.co;2

    Article  Google Scholar 

  • Pinsky ML, Mantua NJ (2014) Emerging adaptation approaches for climate-ready fisheries management. Oceanography 27:146–159. doi:10.5670/oceanog.2014.93

    Article  Google Scholar 

  • Pinsky ML, Worm B, Fogarty MJ, Samiento JL, Levin SA (2013) Marine taxa track local climate velocities. Science 341:1239–1242. doi:10.1126/science.1239352

    Article  CAS  PubMed  Google Scholar 

  • Plaganyi EE, Punt AE, Hillary R, Morello EB, Thebaud O, Hutton T, Pillans RD, Thorson JT, Fulton EA, Smith ADM, Smith F, Bayliss P, Haywood M, Lyne V, Rothlisberg PC (2014) Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish 15:1–22. doi:10.1111/j.1467-2979.2012.00488.x

    Article  Google Scholar 

  • Planque B, Fredou T (1999) Temperature and the recruitment of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 56:2069–2077. doi:10.1139/cjfas-56-11-2069

    Article  Google Scholar 

  • Planque B, Fromentin JM, Cury P, Drinkwater KF, Jennings S, Perry RI, Kifani S (2010) How does fishing alter marine populations and ecosystems sensitivity to climate? J Mar Syst 79:403–417

    Article  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779. doi:10.1111/j.1095-8649.2010.02783.x

    Article  PubMed  Google Scholar 

  • Pörtner HO, Hardewig I, Sartoris FJ, Van Dijk PLM (1998) Energetic aspects of cold adaptation: critical temperatures in metabolic, ionic and acid-base regulation? Soc Exp Biol Seminar Ser 66:88–120

    Google Scholar 

  • Pörtner HO, Berdal B, Blust R, Brix O, Colosimo A, De Wachter B, Giuliani A, Johansen T, Fischer T, Knust R, Lannig G, Naevdal G, Nedenes A, Nyhammer G, Sartoris FJ, Serendero I, Sirabella P, Thorkildsen S, Zakhartsev M (2001) Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont Shelf Res 21:1975–1997. doi:10.1016/s0278-4343(01)00038-3

    Article  Google Scholar 

  • Pörtner HO, Bock C, Knust R, Lannig G, Lucassen M, Mark FC, Sartoris FJ (2008) Cod and climate in a latitudinal cline: physiological analyses of climate effects in marine fishes. Clim Res 37:253–270. doi:10.3354/cr00766

    Article  Google Scholar 

  • Provencher L, Munro J, Dutil JD (1993) Osmotic performance and survival of Atlantic cod (Gadus morhua) at low salinities. Aquaculture 116:219–231. doi:10.1016/0044-8486(93)90010-v

    Article  CAS  Google Scholar 

  • Purchase CF, Brown JA (2000) Interpopulation differences in growth rates and food conversion efficiencies of young Grand Banks and Gulf of Maine Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 57:2223–2229. doi:10.1139/cjfas-57-11-2223

    Article  Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    Article  CAS  Google Scholar 

  • Rajasilta M, Eklund J, Hanninen J, Kurkilahti M, Kaaria J, Rannikko P, Soikkeli M (1993) Spawning of herring (Clupea harengus membras L.) in the Archipelago Sea. ICES J Mar Sci 50:233–246. doi:10.1006/jmsc.1993.1026

    Article  Google Scholar 

  • Ratz HJ, Lloret J (2003) Variation in fish condition between Atlantic cod (Gadus morhua) stocks, the effect on their productivity and management implications. Fish Res 60:369–380. doi:10.1016/s0165-7836(02)00132-7

    Article  Google Scholar 

  • Restrepo VR, Powers JE (1999) Precautionary control rules in US fisheries management: specification and performance. ICES J Mar Sci 56:846–852. doi:10.1006/jmsc.1999.0546

    Article  Google Scholar 

  • Rijnsdorp AD, Peck MA, Engelhard GH, Mollmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:1570–1583. doi:10.1093/icesjms/fsp056

    Article  Google Scholar 

  • Robichaud D, Rose GA (2004) Migratory behaviour and range in Atlantic cod: inference from a century of tagging. Fish Fish 5:185–214

    Article  Google Scholar 

  • Rogers CA (1976) Effects of temperature and salinity on survival of winter flounder embryos. Fish Bull 74:52–58

    Google Scholar 

  • Rose GA, Atkinson BA, Baird J, Bishop CA, Kulka DW (1994) Changes in distribution of Atlantic cod and thermal variations in Newfoundland waters, 1980–1992. In: Jakobsson J, Atthorsson OS, Beverton RJH et al (eds) Cod and climate change—proceedings of a symposium. ICES Mar Sci Symp 198:542–552

  • Rosenberg AA, Bolster WJ, Alexander KE, Leavenworth WB, Cooper AB, McKenzie MG (2005) The history of ocean resources: modeling cod biomass using historical records. Front Ecol Environ 3:84–90

    Article  Google Scholar 

  • Rosenberg AA, Swasey JH, Bowman M (2006) Rebuilding US fisheries: progress and problems. Front Ecol Environ 4:303–308

    Article  Google Scholar 

  • Runge JA, Kovach AI, Churchill JH, Kerr LA, Morrison JR, Beardsley RC, Berlinsky DL, Chen CS, Cadrin SX, Davis CS, Ford KH, Grabowski JH, Howell WH, Ji RB, Jones RJ, Pershing AJ, Record NR, Thomas AC, Sherwood GD, Tallack SML, Townsend DW (2010) Understanding climate impacts on recruitment and spatial dynamics of Atlantic cod in the Gulf of Maine: integration of observations and modeling. Prog Oceanogr 87:251–263. doi:10.1016/j.pocean.2010.09.016

    Article  Google Scholar 

  • Safina C, Rosenberg AA, Myers RA, Quinn TJ II, Collie JS (2005) U.S. ocean fish recovery: staying the course. Science 309:707–708. doi:10.1126/science.1113725

    Article  CAS  PubMed  Google Scholar 

  • Sale PF, Hanksi I, Kritzer JP (2006) The merging of metapopulation theory and marine ecology: establishing the historical context. In: Kritzer JP, Sale PF (eds) Marine metapopulations. Academic Press, Boston, pp 3–22

    Chapter  Google Scholar 

  • Sartoris FJ, Bock C, Serendero I, Lannig G, Pörtner HO (2003) Temperature-dependent changes in energy metabolism, intracellular pH and blood oxygen tension in the Atlantic cod. J Fish Biol 62:1239–1253. doi:10.1046/j.1095-8649.2003.00099.x

    Article  CAS  Google Scholar 

  • Sayer MDJ, Reader JP, Dalziel TRK (1993) Fresh-water acidification—effects on the early life stages of fish. Rev Fish Biol Fish 3:298

    Article  Google Scholar 

  • Sherwood GD, Grabowski JH (2010) Exploring the life-history implications of colour variation in offshore Gulf of Maine cod (Gadus morhua). ICES J Mar Sci 67:1640–1649

    Article  Google Scholar 

  • Sherwood GD, Grabowski JH (2015) A comparison of cod life-history parameters inside and outside of four year-round groundfish closed areas in New England, USA. ICES J Mar Sci. doi:10.1093/icesjms/fsv215

  • Simpson MR, Walsh SJ (2004) Changes in the spatial structure of Grand Bank yellowtail flounder: testing MacCall’s basin hypothesis. J Sea Res 51:199–210. doi:10.1016/j.seares.2003.08.007

    Article  Google Scholar 

  • Simpson SD, Jennings S, Johnson MP, Blanchard JL, Schon PJ, Sims DW, Genner MJ (2011) Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr Biol 21:1565–1570. doi:10.1016/j.cub.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  • Sissenwine MP (1974) Variability in recruitment and equilibrium catch of southern New England yellowtail flounder fishery. ICES J Mar Sci 36:15–26

    Article  Google Scholar 

  • Smedbol KR, Wroblewski JS (2002) Metapopulation theory and northern cod population structure: interdependency of subpopulations in recovery of a groundfish population. Fish Res 55:161–174. doi:10.1016/S0165-7836(01)00289-2

    Article  Google Scholar 

  • Smith WG, Morse WW (1985) Retention of larval haddock Melanogrammus aeglefinus in the Georges Bank region, a gyre-influenced spawning area. Mar Ecol Prog Ser 24:1–13. doi:10.3354/meps024001

    Article  Google Scholar 

  • Smith WG, Berrien P, McMillan DG, Wells A (1981) The distribution, abundance and production of Atlantic cod and haddock larvae off northeastern United States in 1978–1979 and 1979–1980. ICES Demersal Fish Committee C.M. 1981/G:52

  • Steinacher M, Joos F, Froelicher TL, Plattner GK, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  CAS  Google Scholar 

  • Steinacher M, Joos F, Frolicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005

    Article  CAS  Google Scholar 

  • Steneck RS, Wilson JA (2010) A fisheries play in an ecosystem theater: challenges of managing ecological and social drivers of marine fisheries at multiple spatial scales. Bull Mar Sci 86:387–411

    Google Scholar 

  • Steneck RS, Vavrinec J, Leland AV (2004) Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. Ecosystems 7:323–332

    Article  Google Scholar 

  • Steves BP, Cowen RK, Malchoff MH (2000) Settlement and nursery habitats for demersal fishes on the continental shelf of the New York Bight. Fish Bull 98:167–188

    Google Scholar 

  • Stierhoff KL, Targett TE, Miller K (2006) Ecophysiological responses of juvenile summer and winter flounder to hypoxia: experimental and modeling analyses of effects on estuarine nursery quality. Mar Ecol Prog Ser 325:255–266. doi:10.3354/meps325255

    Article  CAS  Google Scholar 

  • Stoner AW, Manderson JP, Pessutti JP (2001) Spatially explicit analysis of estuarine habitat for juvenile winter flounder: combining genralized additive models and geographic information systems. Mar Ecol Prog Ser 213:253–271

    Article  Google Scholar 

  • Sullivan MC, Cowen RK, Steves BP (2005) Evidence for atmosphere-ocean forcing of yellowtail flounder (Limanda ferruginea) recruitment in the Middle Atlantic Bight. Fish Oceanogr 14:386–399. doi:10.1111/j.1365-2419.2005.00343.x

    Article  Google Scholar 

  • Sumaila UR, Cheung WWL, Lam VWY, Pauly D, Herrick S (2011) Climate change impacts on the biophysics and economics of world fisheries. Nat Clim Change 1:449–456. doi:10.1038/nclimate1301

    Article  Google Scholar 

  • Sutcliffe WH, Drinkwater K, Muir BS (1977) Correlations of fish catch and environmental factors in Gulf of Maine. J Fish Res Board Can 34:19–30

    Article  Google Scholar 

  • Sutcliffe WH, Loucks RH, Drinkwater KF, Coote AR (1983) Nutrient flux onto the Labrador Shelf from Hudson Strait and its biological consequences. Can J Fish Aquat Sci 40:1692–1701

    Article  Google Scholar 

  • Taylor DL, Collie JS (2003) Effect of temperature on the functional response and foraging behavior of the sand shrimp Crangon septemspinosa preying on juvenile winter flounder Pseudopleuronectes americanus. Mar Ecol Prog Ser 263:217–234. doi:10.3354/meps263217

    Article  Google Scholar 

  • Taylor DL, Danila DJ (2005) Predation on winter flounder (Pseudopleuronectes americanus) eggs by the sand shrimp (Crangon septemspinosa). Can J Fish Aquat Sci 62:1611–1625. doi:10.1139/f05-047

    Article  Google Scholar 

  • Topp RW (1968) An estimate of fecundity of the winter flounder, Pseudopleuronectes americanus. J Fish Res Board Can 25:1299–1302

    Article  Google Scholar 

  • Vert-pre KA, Amoroso RO, Jensen OP, Hilborn R (2013) Frequency and intensity of productivity regime shifts in marine fish stocks. Proc Natl Acad Sci USA 110:1779–1784. doi:10.1073/pnas.1214879110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh SJ, Morgan MJ (2004) Observations of natural behaviour of yellowtail flounder derived from data storage tags. ICES J Mar Sci 61:1151–1156. doi:10.1016/j.icesjms.2004.07.005

    Article  Google Scholar 

  • Walsh SJ, Simpson M, Morgan MJ (2004) Continental shelf nurseries and recruitment variability in American plaice and yellowtail flounder on the Grand Bank: insights into stock resiliency. J Sea Res 51:271–286. doi:10.1016/j.seares.2003.10.003

    Article  Google Scholar 

  • Walsh J, Wuebbles D, Hayhoe K, Kossin J, Kunkel K, Stephens G, Thorne P, Vose R, Wehner M, Willis J, Anderson D, Doney S, Feely R, Hennon P, Kharin V, Knutson T, Landerer F, Lenton T, Kennedy J, Somerville R (2014) Our changing climate. In: Melillo JM, Richmond TC, Yohe GW (eds) Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, Washington, DC, pp 19–67. doi:10.7930/J0KW5CXT

  • Westin L, Nissling A (1991) Effects of salinity on spermatozoa motility, percentage of fertilized eggs and egg development of Baltic cod (Gadus morhua), and implications for cod stock flucturaions in the Baltic. Mar Biol 108:5–9. doi:10.1007/bf01313465

    Article  Google Scholar 

  • Wilber DH, Clarke DG, Gallo J, Alcoba CJ, Dilorenzo AM, Zappala SE (2013) Identification of winter flounder (Pseudopleuronectes americanus) estuarine spawning habitat and factors influencing egg and larval distributions. Estuaries Coasts 36:1304–1318. doi:10.1007/s12237-013-9642-z

    Article  CAS  Google Scholar 

  • Williams GC (1975) Viable embryogenesis of winter flounder Pseudopleuronectes americanus from −1.8 °C to 15 °C. Mar Biol 33:71–74. doi:10.1007/bf00395003

    Article  Google Scholar 

  • Wirgin I, Kovach AI, Maceda L, Roy NK, Waldman J, Berlinsky DL (2007) Stock identification of Atlantic cod in US waters using microsatellite and single nucleotide polymorphism DNA analyses. Trans Am Fish Soc 136:375–391. doi:10.1577/t06-068.1

    Article  CAS  Google Scholar 

  • Witman JD, Etter RJ, Smith F (2004) The relationship between regional and local species diversity in marine benthic communities: a global perspective. Proc Nat Acad Sci 101:15664–15669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding global fisheries. Science 325:578–585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review was prepared through support from the Gordon and Betty Moore Foundation to the Environmental Defense Fund (EDF). The authors benefited from discussions with the Northeast Shelf Fishery Ecosystem Work Group convened by EDF. JPK is especially grateful to his colleagues on the New England Fishery Management Council’s Scientific and Statistical Committee, with whom he grapples on a regular basis with the practical implications of changes in the region’s marine ecosystem. However, the content of this review and any errors are the responsibility of the authors alone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob P. Kritzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, E.S., Smith, S.L. & Kritzer, J.P. Effects of climate change on four New England groundfish species. Rev Fish Biol Fisheries 27, 317–338 (2017). https://doi.org/10.1007/s11160-016-9444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-016-9444-z

Keywords

Navigation