Skip to main content
Log in

The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Atlantic cod, Gadus morhua, were exposed to a progressive stepwise decline in water oxygen pressure \((19.9, 13.2, 10.5, 8.4, 6.2\,\,{\text{and}}\,\,4.3\,{\text{kPa}}\; P_{{\rm O}_{2} }).\) Fish swimming speed and indicators of primary and secondary stress (e.g. blood cortisol and lactate) were measured to assess whether a severe shift in physiological homeostasis (i.e. stress) preceded any change in behaviour or vice versa. Swimming speed increased by 18% when \(P_{{\rm O}_{2}} \) was reduced rapidly from 19.9 kPa to 13.2 kPa and was interpreted as an initial avoidance response. However, swimming speed was reduced by 21% at a moderate level of steady \(P_{{\rm O}_2}\) (8.4 kPa) and continued to drop by 41% under progressively deep hypoxia (4.3 kPa). Elevations in plasma cortisol and blood lactate indicated major physiological stress but only at 4.3 kPa, which corresponds to the critical oxygen tension of this species. We propose that the drop in speed during hypoxia aids to offset major stress and is adaptive for the survival of cod in extensive areas of low oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(P_{{\rm O}_{2}} \) :

Partial pressure of oxygen

References

  • Ærtebjerg G, Carstensen J, Axe P, Druon J-N, Stips A (2003) The 2002 oxygen depletion event in the Kattegat, Belt Sea and Western Baltic, vol 90. Thematic report (HELCOM). In: Helsinki Commission—altic Sea Environment Proceedings, p 64

  • Bejda AJ, Studholme AL, Olla BL (1987) Behavioural responses of red hake, Urophycis chuss, to decreasing concentrations of dissolved oxygen. Environ Biol Fish 19:261–268

    Article  Google Scholar 

  • Burton DT, Heath AG (1980) Ambient oxygen tension (Po2) and transition to anaerobic metabolism in three species of freshwater fish. Can J Fish Aquat Sci 37:1216–1224

    Google Scholar 

  • Chabot D, Dutil J-D (1999) Reduced growth of Atlantic cod in non-lethal hypoxic conditions. J Fish Biol 55:472–491

    Article  Google Scholar 

  • Claireaux G, Dutil J-D (1992) Physiological response of the Atlantic cod (Gadus morhua) to hypoxia at various environmental salinities. J Exp Biol 163:97–118

    Google Scholar 

  • Claireaux G, Webber DM, Kerr SR, Boutilier RG (1995) Physiology and behaviour of free-swimming Atlantic cod (Gadus morhua) facing fluctuating salinity and oxygenation conditions. J Exp Biol 198:61–69

    PubMed  Google Scholar 

  • Claireaux G, Webber DM, Lagardère J-P, Kerr SR (2000) Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (Gadus morhua). J Sea Res 44:257–265

    Article  Google Scholar 

  • Dalla Via J, van den Thillart G, Cattani O, de Zwann A (1994) Influence of long-term hypoxia exposure on the energy metabolism of Solea solea. II. Intermediary metabolism in blood, liver and muscle. Mar Ecol Prog Ser 111:17–27

    Article  CAS  Google Scholar 

  • Dalla Via J, van den Thillart G, Cattani O, Cortesi P (1998) Behavioural responses and biochemical correlates in Solea solea to gradual hypoxic exposure. Can J Zool 76:2108–2113

    Article  Google Scholar 

  • D’Amours D (1993) The distribution of cod (Gadus morhua) in relation to temperature and oxygen level in the Gulf of St. Lawrence. Fish Oceanogr 2:24–29

    Article  Google Scholar 

  • De Wachter B, Satoris FJ, Pörtner HO (1997) The anaerobic endproduct lactate has a behavioural and metabolic signalling function in the shore crab Carcinus maenas. J Exp Biol 200:1015–1024

    PubMed  Google Scholar 

  • Dizon AE (1977) Effect of dissolved oxygen concentration and salinity on the swimming speed of two species of tuna. Fish Bull 75:649–653

    Google Scholar 

  • Domenici P, Steffensen JF, Batty RS (2000) The effect of progressive hypoxia on swimming activity and schooling in Atlantic herring. J Fish Biol 57:1526–1538

    Article  Google Scholar 

  • Eby LA, Crowder LB (2002) Hypoxia-based habitat compression in the Neuse River Estuary: context dependent shifts in behavioural avoidance thresholds. Can J Fish Aquat Sci 59:952–965

    Article  Google Scholar 

  • Fischer P, Rademacher K, Kils U (1992) In situ investigations on the respiration and behaviour of the eelpout Zoarces viviparous under short-term hypoxia. Mar Ecol Prog Ser 88:181–184

    Article  Google Scholar 

  • Fritsche R, Nilsson S (1989) Cardiovascular responses to hypoxia in the Atlantic cod, Gadus morhua. Exp Biol 48:153–160

    PubMed  CAS  Google Scholar 

  • Haman F, Zwingelstein G, Weber J-M (1997) Effects of hypoxia and low temperatures on substrate fluxes in fish: plasma metabolite concentrations are misleading. Am J Physiol 273:R2046–R2054

    PubMed  CAS  Google Scholar 

  • Herbert NA, Wells RMG (2001) The aerobic physiology of the air-breathing blue gourami, Trichogaster trichopterus, necessitates behavioural regulation of breath-hold limits during hypoxic stress and predatory challenge. J Comp Physiol B 171:603–612

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi Y, Ekawa H, Hirata H, Kumai H (2002) Stress response and energy metabolism in various tissues of Nile tilapia Oreochromis niloticus exposed to hypoxic conditions. Fish Sci 68:1374–1383

    Article  CAS  Google Scholar 

  • Johannessen T, Dahl E (1996) Declines in oxygen concentrations along the Norweigan Skagerrak coast, 1927–1993: a signal of ecosystem changes due to eutrophication? Limnol Oceanogr 41:766–778

    Article  CAS  Google Scholar 

  • Lankford SE, Adams TE, Cech JJ (2003) Time of day and water temperature modify the physiological stress response in green sturgeon, Acipenser medirostris. Comp Biochem Physiol 135A:291–302

    Article  CAS  Google Scholar 

  • Mazeaud MM, Mazeaud F (1981) Adrenergic responses to stress in fish. In: Pickering AD (ed) Stress and fish. Academic, New York, pp 49–75

    Google Scholar 

  • Mazeaud MM, Mazeaud F, Donaldson EM (1977) Primary and secondary stress effects of stress in fish: some new data with a general review. Trans Am Fish Soc 106:201–212

    Article  CAS  Google Scholar 

  • Metcalfe JD, Butler PJ (1984) Changes in activity and ventilation in response to hypoxia in unrestrained, unoperated dogfish (Scyliorhinus canicula L.). J Exp Biol 108:411–418

    PubMed  CAS  Google Scholar 

  • Milligan CL, Wood CM (1987) Regulation of blood oxygen transport and red cell pH i after exhaustive activity in rainbow trout (Salmo gairdneri) and starry flounder (Platichthys stellatus). J Exp Biol 133:263–282

    PubMed  CAS  Google Scholar 

  • Moss SA, McFarland WN (1970) The influence of dissolved oxygen and carbon dioxide on fish schooling behaviour. Mar Biol 5:100–107

    Article  Google Scholar 

  • Muusze B, Marcon J, van den Thillart G, Almeida-Val V (1998) Hypoxia tolerance of Amazon fish. Respirometry and energy metabolism of the cichlid Astronotus ocellatus. Comp Biochem Physiol 120A:151–156

    Article  Google Scholar 

  • Neuenfeldt S (2002) The influence of oxygen saturation on the distributional overlap of predator (cod, Gadus morhua) and prey (herring, Clupea harengus) in the Bornholm Basin of the Baltic Sea. Fish Oceangr 11:11–17

    Article  Google Scholar 

  • Nielsen GÆ, Gargas E (1984) Oxygen, nutrients and primary production in the open Danish waters. Limnologica 15:303–310

    CAS  Google Scholar 

  • Nilsson GE, Rosén P, Johansson D (1993) Anoxic depression of spontaneous locomotor activity in crucian carp quantified by a computerized imaging technique. J Exp Biol 180:153–162

    Google Scholar 

  • Perry SF, Fritsche R, Kinkead R, Nilsson S (1991) Control of catecholamine release in vivo and in situ in the Atlantic cod (Gadus morhua) during hypoxia. J Exp Biol 155:549–566

    CAS  Google Scholar 

  • Petersen MF, Steffensen JF (2003) Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. J Exp Biol 206:359–364

    Article  PubMed  CAS  Google Scholar 

  • Pichavant K, Person-Le-Ruyet J, Le Bayon N, Severe A, Le Roux A, Quemener L, Maxime V, Nonnotte G, Boeuf G (2000) Effects of hypoxia on growth and metabolism of juvenile turbot. Aquaculture 188:103–114

    Article  Google Scholar 

  • Pichavant K, Maxime V, Thebault MT, Ollivier H, Garnier JP, Bousquet B, Diouris M, Boeuf G, Nonnotte G (2002) Effects of hypoxia and subsequent recovery on turbot Scophthalmus maximus: hormonal changes and energy metabolism. Mar Ecol Prog Ser 225:275–285

    Article  CAS  Google Scholar 

  • Pickering AD, Pottinger TG (1983) Seasonal and diel changes in plasma cortisol levels of the brown trout, Salmo trutta L. Gen Comp Endocrinol 49:232–239

    Article  PubMed  CAS  Google Scholar 

  • Pickering AD, Pottinger TG (1995) Biochemical effects of stress. In: Hochacka PW, Mommsen TP (eds) Environmental and ecological biochemistry. Elsevier, Oxford, pp 350–379

    Google Scholar 

  • Pihl L, Baden SP, Diaz RJ (1991) Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Mar Biol 108:349–360

    Article  Google Scholar 

  • Plante S, Chabot D, Dutil J-D (1998) Hypoxia tolerance in Atlantic cod. J Fish Biol 53:1342–1356

    Article  Google Scholar 

  • Pörtner HO, Branco LGS, Malvin GM, Wood SC (1994) A new function for lactate in the toad Bufo marinus. J Appl Physiol 76:2405–2410

    Article  PubMed  Google Scholar 

  • Poulin R, Wolf NG, Kramer DL (1987) The effect of hypoxia on the vulnerability of guppies (Poecilia reticulata, Poeciliidae) to an aquatic predator (Astronotus ocellatus, Cichlidae). Environ Biol Fish 20:285–292

    Google Scholar 

  • Randall DJ, Burrgren WW, Farrell AP, Haswell MS (1981) The evolution of air-breathing vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Routley MH, Nilsson GE, Renshaw GMC (2002) Exposure to hypoxia primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia. Comp Biochem Physiol 131A:313–321

    Article  Google Scholar 

  • Schurmann H, Steffensen JF (1992) Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod, Gadus morhua L. J Fish Biol 41:927–934

    Article  Google Scholar 

  • Schurmann H, Steffensen JF (1994) Spontaneous swimming activity of Atlantic cod Gadus morhua exposed to graded hypoxia at three temperatures. J Exp Biol 197:129–142

    PubMed  Google Scholar 

  • Schurmann H, Steffensen JF (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile cod. J Fish Biol 50:1166–1180

    Google Scholar 

  • Soofiani NM, Priede IG (1985) Aerobic metabolic scope and swimming performance in juvenile cod, Gadus morhua L. J Fish Biol 26:127–138

    Article  Google Scholar 

  • Staurnes M, Sigholt T, Pedersen HP, Rustad T (1994) Physiological effects of simulated high-density transport of Atlantic cod (Gadus morhua). Aquaculture 119:381–391

    Article  CAS  Google Scholar 

  • Tetens V, Christensen NJ (1987) Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout. J Comp Physiol B 157:667–675

    Article  PubMed  CAS  Google Scholar 

  • Van Raaij MTM, Pit DSS, Balm PHM, Steffens AB, van den Thillart GEEJM (1996a) Behavioural strategy and the physiological stress response in rainbow trout exposed to severe hypoxia. Horm Behav 30:85–92

    Article  Google Scholar 

  • Van Raaij MTM, van den Thillart GEEJM, Vianen GJ, Pit DSS, Balm PHM, Steffens AB (1996b) Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss, L.) and common carp (Cyprinus carpio, L.) during deep hypoxia and subsequent recovery. J Comp Physiol B 166:443–452

    Article  CAS  Google Scholar 

  • Van den Thillart G, Dalla Via J, Vitali G, Cortesi P (1994) Influence of long-term hypoxia on the energy metabolism of Solea solea. I. Crticial O2 levels for aerobic and anaerobic metabolism. Mar Ecol Prog Ser 104:109–117

    Google Scholar 

  • Waller U, Black E, Burt D, Groot C, Rosenthal H (2000) The reaction of young coho Oncorhynchus kisutch to declining oxygen levels during long-term exposure. J Appl Ichthyol 16:14–19

    Article  Google Scholar 

  • Wollmuth LP, Crawshaw LI, Panayiotides-Djaferis H (1987) Thermoregulatory effects of intracranial norepinephrine injections in goldfish. Am J Physiol 253:R821–R826

    PubMed  CAS  Google Scholar 

  • Wollmuth LP, Crawshaw LI, Rausch RN (1988) Adrenoceptors and temperature regulation in goldfish. Am J Physiol 255:R600–R604

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the European Union, Fisheries Directorate, through contract QLRS-2002-00799 (Project ETHOFISH), is acknowledged. The authors wish to thank the Crew of R/V Ophelia for the supply of cod and Anders D. Jordan, Peter V. Skov and Jane Behrens for their help during physiological sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Herbert.

Additional information

Communicated by M. Kühl, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbert, N.A., Steffensen, J.F. The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress. Marine Biology 147, 1403–1412 (2005). https://doi.org/10.1007/s00227-005-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0003-8

Keywords

Navigation