Skip to main content
Log in

Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy

  • Original Research
  • Published:
Review of Quantitative Finance and Accounting Aims and scope Submit manuscript

Abstract

Extending the framework of Amin and Jarrow (J Int Money Financ 10:310–329, 1991) and Bo et al. (Insur Math Econ 46:461–469, 2010), this study provides a theoretical exploration of currency options pricing under the presence of interest-rate regime shifts and exchange-rate asymmetric jumps. Evidence of interest-rate regime shifts inferred from UK and US zero coupon bond yields provides support for the regime-switching specifications which we reflect upon the domestic and foreign forward rates. Results of statistical tests conducted on JPY/USD and EUR/USD FX rates provide further support the rationale behind using a double exponential jump diffusion process within a Markov modulated Heath–Jarrow–Morton economy. Our numerical results suggest that, the pricing performance of our model is closely comparable to the Bo-Wang-Yang model for at-the-money options, yet yields improvements in percentage root mean errors for in-the-money options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The moment generating functions of occupation times for multi-state Markov chains are given in “Appendix 1”.

  2. An explicit form for the Kou’s cumulative distribution function is provided in “Appendix 2”.

  3. We provide the pricing formula of the BWY model in “Appendix 3”.

  4. Maximum likelihood estimation for the double exponential jump-diffusion model is done via the procedure developed by Ramezani and Zeng (2007).

  5. See “Appendix 4”.

References

  • Akgiray V, Booth GG (1988) The stable law model of stock returns. J Bus Econ Stat 6:51–57

    Google Scholar 

  • Amin KI, Jarrow RA (1991) Pricing foreign currency option under stochastic interest rates. J Int Money Financ 10:310–329

    Article  Google Scholar 

  • Bailey W, Stulz RM (1989) The pricing of stock index options in a general equilibrium model. J Financ Quant Anal 24:1–12

    Article  Google Scholar 

  • Ball CA, Torous WN (1985) On Jumps in common stock prices and their impact on call option pricing. J Financ 40:155–173

    Article  Google Scholar 

  • Bansal R, Zhou H (2002) Term structure of interest rates with regime shifts. Journal of Finance 5:1997–2043

    Article  Google Scholar 

  • Bates D (2000) Post- ‘87 crash fears in the S&P 500 futures option market. J Econom 94:181–238

    Article  Google Scholar 

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654

  • Bo L, Wang Y, Yang X (2010) Markov-modulated jump diffusions for currency option pricing. Insur Math Econ 46:461–469

    Article  Google Scholar 

  • Carr P, Wu L (2004) Time-changed Levy processes and option pricing. J Financ Econ 17:113–141

    Article  Google Scholar 

  • Cherny AS, Maslov VP (2004) On minimization and maximization of entropy in various disciplines. Theory Probab. Appl 48:447–464

    Article  Google Scholar 

  • Chiang TC, Chiang JJ (1999) On the nonlinear specifications of short-term interest rate behavior: evidence from euro-currency markets. Rev Quant Financ Acc 12:351–370

    Article  Google Scholar 

  • Craven BD, Islam MNS (2008) A model for stock market returns: non-Gaussian fluctuations and financial factors. Rev Quant Financ Acc 30:355–370

    Article  Google Scholar 

  • Dean WG, Faff RW (2008) Evidence of feedback trading with Markov switching regimes. Rev Quant Financ Acc 30:133–151

    Article  Google Scholar 

  • Dempster AP, Larid NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    Google Scholar 

  • Elliott RJ, Chan L, Siu TK (2005) Option pricing and Esscher transform under regime switching. Ann Finance 1:423–432

    Article  Google Scholar 

  • Fu Q (1996) On the valuation of an option to exchange one interest rate for another. J Bank Finance 20:645–653

    Article  Google Scholar 

  • Garman M, Kohlhagen S (1983) Foreign currency option values. J Int Money Financ 2:239–253

    Article  Google Scholar 

  • Goldfeld SM, Quandt RE (1972) Nonlinear methods in econometrics. North Holland, Amsterdam

    Google Scholar 

  • Gray SF (1996) Modeling the conditional distribution of interest rates as a regime-switching process. J Financ Econ 42:27–62

    Article  Google Scholar 

  • Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:357–384

    Article  Google Scholar 

  • Hamilton JD, Susmel R (1994) Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics 64:307–333

    Article  Google Scholar 

  • Heath D, Jarrow R, Morton A (1992) Bond pricing and the term structure of interest rates: a new methodology for contingent claim valuation. Econometrica 60:77–105

    Article  Google Scholar 

  • Jarrow RA, Rosenfeld E (1984) Jump risks and the intertemporal capital asset pricing model. J Bus 57:337–351

    Article  Google Scholar 

  • Jiang GJ (1998) Jump diffusion model of exchange rate dynamics: estimation via indirect inference. University of Groningen. Working paper.

  • Jorion P (1988) On jump processes in the foreign exchange and stock markets. Rev Financ Financ Stud 1:427–455

    Article  Google Scholar 

  • Kou SG (2002) A jump diffusion model for option pricing. Manage Sci 48:1086–1101

    Article  Google Scholar 

  • Kou SG, Wang H (2004) Option pricing under a double exponential jump diffusion model. Manage Sci 50:1178–1192

    Article  Google Scholar 

  • Maheu JM, Mccurdy TH (2004) News arrival, jump dynamics, and volatility components for individual stock returns. J Financ 59:755–793

    Article  Google Scholar 

  • Merton RC (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3:125–144

    Article  Google Scholar 

  • Nishina K, Maghrebi N, Holmes MJ (2012) Nonlinear adjustments of volatility expectations to forecast errors: evidence from Markov-regime switching in implied volatility. Rev Pacif Basin Financ Mark Polic 15:1250007

    Article  Google Scholar 

  • Pedler PJ (1971) Occupation times for two state Markov chain. J Appl Probab 8:381–390

    Article  Google Scholar 

  • Ramezani CA, Zeng Y (2007) Maximum likelihood estimation of the double exponential jump diffusion process. Ann Financ 3:487–507

    Article  Google Scholar 

  • Schweizer M (2010) The minimal entropy martingale measure in encyclopedia of quantitative finance. Wiley, New York, pp 1195–1200

    Google Scholar 

  • Valchev S (2004) Stochastic volatility Gaussian Heath–Jarrow–Morton models. Appl Math Financ 11:347–368

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and two anonymous referees for their valuable comments and suggestions. C. Y. Li is grateful for the funding support from Academia Sinica, and the National Science Council of Republic of China (NSC 102-2118-M-001-007-MY2). C. Y. Li also would like to thank Dr. Henghsiu Tsai, Pao-Peng Hsu and Zheng-Hui Chen for their comments and helpful conversations on earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yi Li.

Appendices

Appendix 1

Let \({\mathbf{U}}\) be a diagonal matrix with vector elements \({\mathbf{\varsigma }} = (\varsigma_{1} ,\varsigma_{2} , \ldots ,\varsigma_{n} )\). Then, for any \({\mathbf{\varsigma }}\), the moment generation function of \({\varvec{\updelta}}(0,t)\) is given by

$$E\left[ {{{\text{exp}}} \left( {{\mathbf{\varsigma }} \cdot {\varvec{\updelta}}(0,t)} \right)\left| {X(0)} \right.} \right] = {{\text{exp}}} \left[ {({\varvec{\Psi}} + {\mathbf{U}})t} \right]X(0) \cdot {\mathbf{I}} = H({\varvec{\Psi}})$$
(5.1)

where \({\varvec{\Psi}}\) is a \(n \times n\) transition-rate matrix, \({\mathbf{I}} = (1, \, 1, \ldots ,1) \in {\mathbb{R}}^{n}\), \(\left( \cdot \right)\) represents an inner product, and \(H\left( {\varvec{\Psi}} \right)\) is a moment generation function which completely characterize the probability density function.

Appendix 2

Suppose \(\left\{ {\zeta_{1} ,\zeta_{2} , \ldots } \right\}\) is a sequence of i.i.d exponential random variables with parameters \(\eta_{1}\) and \(\eta_{2}\). Then for every \(n \ge 1\), the tail probabilities are given by

$$\begin{aligned} & {\mathbf{\mathbb{P}}}\left( {{\mathcal{N}}(0,\sigma (t)^{2} ) + \sum\limits_{i = 1}^{n} {\zeta_{i}^{ + } \ge x} } \right) \\ & = \frac{{(\sigma (t)\eta_{1} )^{n} }}{{\sigma (t)\sqrt {2\pi } }}{{\text{exp}}} \left( {\frac{1}{2}(\sigma (t)\eta_{1} )^{n} } \right)\int\limits_{x}^{\infty } {{{\text{exp}}} \left( { - u\eta_{1} } \right)Hh_{n - 1} \left( { - \frac{u}{\sigma (t)} + \sigma (t)\eta_{1} } \right)du} , \\ \end{aligned}$$
(6.1)
$$\begin{aligned} & {\mathbf{\mathbb{P}}}\left( {{\mathcal{N}}(0,\sigma^{2} (t)) - \sum\limits_{i = 1}^{n} {\zeta_{i}^{ - } \ge x} } \right) \\ & = \frac{{(\sigma (t)\eta_{2} )^{n} }}{{\sigma (t)\sqrt {2\pi } }}{{\text{exp}}} \left( {\frac{1}{2}(\sigma (t)\eta_{2} )^{n} } \right)\int\limits_{x}^{\infty } {{{\text{exp}}} \left( { - u\eta_{2} } \right)Hh_{n - 1} \left( { - \frac{u}{\sigma (t)} + \sigma (t)\eta_{2} } \right)du,} \\ \end{aligned}$$
(6.2)

where \(Hh_{n} (x) = \frac{1}{n!}\int_{x}^{\infty } {(u - x)^{n} } {{\text{exp}}} \left( {\frac{{ - u^{2} }}{2}} \right)du\), for \(n = 0,1,2, \ldots\)

Therefore, given (6.1) and (6.2), we get

$$\begin{aligned} & \varUpsilon \left( {\mu (t),\sigma (t), \, \lambda t, \, p_{E} , \, \eta_{1} , \, \eta_{2} ; \, \alpha } \right) = {\mathbf{\mathbb{P}}}\left( {\mu (t) + \sigma (t){\mathcal{N}}(0,1) + \sum\limits_{j = 1}^{n} {Z_{E,j} \ge \varpi } } \right) \\ & =\varPi (0){\mathbf{\mathbb{P}}}\left( {\mu (t) + \sigma (t){\mathcal{N}}(0,1) \ge \alpha } \right) + \\ & \sum\limits_{n = 1}^{\infty } \varPi (n;\lambda t)\sum\limits_{k = 1}^{n} {P(n,k){\mathbf{\mathbb{P}}}\left( {\mu (t) + \sigma (t){\mathcal{N}}(0,1) + \sum\limits_{j = 1}^{n} {\zeta_{j}^{ + } \ge \varpi } } \right)} \\ & + \sum\limits_{n = 1}^{\infty } \varPi (n;\lambda t)\sum\limits_{k = 1}^{n} {Q(n,k){\mathbf{\mathbb{P}}}\left( {\mu (t) + \sigma (t){\mathcal{N}}(0,1) - \sum\limits_{j = 1}^{n} {\zeta_{j}^{ - } \ge \varpi } } \right),} \\ \end{aligned}$$
(6.3)

where

$$\varPi \left( {n;\lambda t} \right) = {{\text{exp}}} \left( { - \lambda t} \right)\frac{{\left( {\lambda t} \right)^{n} }}{n!},$$
$$P(n,k) = \sum\limits_{i = k}^{n - 1} {\left( {\begin{array}{*{20}c} {n - k - 1} \\ {i - k} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} n \\ i \\ \end{array} } \right)} \left( {\frac{{\eta_{1} }}{{\eta_{1} + \eta_{2} }}} \right)^{i - k} \left( {\frac{{\eta_{2} }}{{\eta_{1} + \eta_{2} }}} \right)^{n - i} p_{E}^{i} \left( {1 - p_{E}^{{}} } \right)^{n - i} ,$$
$$Q(n,k) = \sum\limits_{i = k}^{n - 1} {\left( {\begin{array}{*{20}c} {n - k - 1} \\ {i - k} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} n \\ i \\ \end{array} } \right)} \left( {\frac{{\eta_{1} }}{{\eta_{1} + \eta_{2} }}} \right)^{n - i} \left( {\frac{{\eta_{2} }}{{\eta_{1} + \eta_{2} }}} \right)^{i - k} p_{E}^{n - i} \left( {1 - p_{E} } \right)^{i} .$$

Appendix 3 (Bo-Wang-Yang model (BWY), 2010)

The regime-switching jump diffusion model under the risk neutral measure is described by:

$$\frac{dS(t)}{S(t - )} = r^{D} (X(t)) - r^{F} (X(t))dt + \sigma_{J} (X(t))dW(t)\; + \left( {{{\text{exp}}} (Z_{J,n} ) - 1} \right)dN_{J} (t;\lambda (X(t))),$$
(7.1)

where \(Z_{J,n}\) is a normally distributed with mean \(\mu_{Z, \, J}\) and variance \(\sigma_{Z,J}^{2}\).

Thus,

$$C_{BWY} (\left. t \right|{\mathcal{H}} (t )) = \int\limits_{t}^{T} {\sum\limits_{j = 1}^{2} {\sum\limits_{n = 0}^{\infty } {\varPi \left( {n;\lambda_{{}}^{*} \delta_{j}^{D} } \right)} C_{JD} \left( {\left. {n,\delta_{j}^{D} } \right|{\mathcal{H}} (t )} \right)} } \varphi \left( {\delta_{j}^{D} } \right)d\delta_{j}^{D} ,$$

where

$$\begin{aligned} & C_{JD} \left( {\left. {n,\delta_{j}^{D} } \right|{\mathcal{H}} (t )} \right) = \\ & S(t){{\text{exp}}} \left( { - r^{f} \delta_{j}^{D} } \right){\mathfrak{N}}\left( {d_{JD,1} (t, \, T)} \right) - K{{\text{exp}}} \left( { - r^{D} \delta_{j}^{D} } \right){\mathfrak{N}}\left( {d_{JD,2} (t, \, T)} \right), \\ \end{aligned}$$
$$d_{JD,2} (t, \, T) = \frac{{\ln \left( {\frac{S(t)}{K}\frac{{{{\text{exp}}} \left( { - r^{f} \delta_{j}^{D} } \right)}}{{{{\text{exp}}} \left( { - r^{D} \delta_{j}^{D} } \right)}}} \right) - \frac{1}{2}\left( {\sigma_{S} \delta_{j}^{D} + n\sigma_{J} } \right)}}{{\sqrt {\sigma_{S} \delta_{j}^{D} (t,T) + n\sigma_{J} } }},$$
$$d_{JD,1} (t, \, T) = d_{JD,2} (t, \, T) + \sqrt {\sigma_{S} \delta_{j}^{D} (t,T) + n\sigma_{J} } ,$$

where \(\varPi \left( {n;\lambda_{{}}^{*} t} \right)\) is the probability density function for a Poisson process with intensity \(\lambda_{{}}^{*} t\), and \({\mathfrak{N}}( \cdot )\) represents the cumulative normal distribution function.

Appendix 4

Further results on the first fourth moments, which include the mean, standard, skewness, and kurtosis of the sample data, the JD model, and the double exponential jump diffusion model, for the 100JPY/USD and the EUR/USD spot-FX rates are shown in Table 6.

Table 6 shows that the skewness and Kurtosis of the double exponential jump diffusion model most closely matches the sample data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, MH., Li, CY. & Chen, SN. Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy. Rev Quant Finan Acc 46, 459–482 (2016). https://doi.org/10.1007/s11156-014-0478-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11156-014-0478-9

Keywords

JEL Classification

Navigation