Skip to main content
Log in

Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present work provides a systematic study to delineate the reaction mechanism and develop a mechanistic kinetic model for the hydrodeoxygenation (HDO) of triglycerides (TG) over alumina supported nickel catalyst. The HDO of 1:2 molar mixtures of tripalmitin and tristearin was studied in a batch reactor over a wide range of process conditions. The results showed that TG instantaneously converted to respective fatty acids. The fatty acids further converted to the fatty aldehydes. The fatty aldehydes, then, rapidly converted to alkanes by two parallel reaction pathways. The decarbonylation of fatty aldehyde (RP-I) was the dominating route compared to the reduction of the fatty aldehyde to fatty alcohol followed by its dehydration and hydrogenation (RP-II). A mechanistic kinetic model was developed based on the observed reaction pathway to correlate the experimental results. The rate constants for the conversion of palmitic acid and stearic acid to alkanes were matched closely with each other thereby demonstrating that HDO is independent of fatty acid chain length. The developed kinetic model was further validated using experimental data at various hydrogen-to-nitrogen mole ratios in the gas phase. Furthermore, the rate constants obtained for various catalyst loadings were correlated by a linear equation with zero intercept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FA:

Fatty acid

HDL:

Hexadecanol

HDO:

Hydrodeoxygenation

HPD:

Heptadecane

HNM:

Hydrogen-to-nitrogen mole ratio

HXD:

Hexadecane

ODL:

Octadecanol

OD:

Octadecane

PA:

Palmitic acid

PD:

Pendadecane

SA:

Stearic acid

TG:

Triglyceride

TP:

Tripalmitin

TS:

Tristearin

References

  1. U.S. Energy Information Administration (2015) Annual energy outlook 2015 with projections to 2040. doi: DOE/EIA-0383(2013). http://www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf.

  2. Mathur AS (2011) Basic statistics on Indian petroleum & natural gas. http://petroleum.nic.in/petstat.pdf

  3. Europian renewable energy council rnewable energy scenario to 2040. http://www.censolar.es/erec2040.pdf. doi: 10.1017/CBO9781107415324.004

  4. Maity SK (2015) Opportunities, recent trends, and challenges of integrated biorefinery: part I. Renew Sustain Energy Rev 43:1427–1445. doi:10.1016/j.rser.2014.11.092

    Article  CAS  Google Scholar 

  5. Li Y, Zhang C, Liu Y et al (2016) Study of X-ray photoelectron spectroscopy on coke deposited on Ni/HZSM-5 in bio-oil hydrodeoxygenation. Reac Kinet Mech Cat 117:801–813. doi:10.1007/s11144-016-0976-y

    Article  CAS  Google Scholar 

  6. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part II. Renew Sustain Energy Rev 43:1446–1466. doi:10.1016/j.rser.2014.08.075

    Article  CAS  Google Scholar 

  7. Mayfield S, Wong PK (2011) Fuel for debate. Nature 476:402–403. doi:10.1038/476402a

    Article  CAS  Google Scholar 

  8. Kovács S, Kasza T, Thernesz A et al (2011) Fuel production by hydrotreating of triglycerides on NiMo/Al2O3/F catalyst. Chem Eng J 176–177:237–243. doi:10.1016/j.cej.2011.05.110

    Article  Google Scholar 

  9. Chiappero M, Do PTM, Crossley S et al (2011) Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts. Fuel 90:1155–1165. doi:10.1016/j.fuel.2010.10.025

    Article  CAS  Google Scholar 

  10. Xu J, Jiang J, Sun Y, Chen J (2010) Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Bioresour Technol 101:9803–9806. doi:10.1016/j.biortech.2010.06.147

    Article  CAS  Google Scholar 

  11. Li L, Coppola E, Rine J et al (2010) Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuels 24:1305–1315. doi:10.1021/ef901163a

    Article  CAS  Google Scholar 

  12. Lima DG, Soares VCD, Ribeiro EB et al (2004) Diesel-like fuel obtained by pyrolysis of vegetable oils. J Anal Appl Pyrolysis 71:987–996. doi:10.1016/j.jaap.2003.12.008

    Article  CAS  Google Scholar 

  13. Kubičková I, Kubička D (2010) Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: a review. Waste Biomass Valoriz 1:293–308. doi:10.1007/s12649-010-9032-8

    Article  Google Scholar 

  14. Boda L, Onyestyák G, Solt H et al (2010) Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Appl Catal A Gen 374:158–169. doi:10.1016/j.apcata.2009.12.005

    Article  CAS  Google Scholar 

  15. Madsen AT, Ahmed EH, Christensen CH et al (2011) Hydrodeoxygenation of waste fat for diesel production: study on model feed with Pt/alumina catalyst. Fuel 90:3433–3438. doi:10.1016/j.fuel.2011.06.005

    Article  CAS  Google Scholar 

  16. Duan J, Han J, Sun H et al (2012) Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catal Commun 17:76–80. doi:10.1016/j.catcom.2011.10.009

    Article  CAS  Google Scholar 

  17. Harnos S, Onyestyák G, Kalló D (2012) Hydrocarbons from sunflower oil over partly reduced catalysts. Reac Kinet Mech Cat 106:99–111. doi:10.1007/s11144-012-0424-6

    Article  CAS  Google Scholar 

  18. Sankaranarayanan TM, Banu M, Pandurangan A, Sivasanker S (2011) Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites. Bioresour Technol 102:10717–10723. doi:10.1016/j.biortech.2011.08.127

    Article  CAS  Google Scholar 

  19. Šimáček P, Kubička D, Kubičková I et al (2011) Premium quality renewable diesel fuel by hydroprocessing of sunflower oil. Fuel 90:2473–2479. doi:10.1016/j.fuel.2011.03.013

    Article  Google Scholar 

  20. Sharma RK, Anand M, Rana BS et al (2012) Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts. Catal Today 198:314–320. doi:10.1016/j.cattod.2012.05.036

    Article  CAS  Google Scholar 

  21. Sotelo-boy R, Liu Y, Minowa T (2011) Renewable diesel production from the hydrotreating of rapeseed oil with Pt/zeolite and NiMo/Al2O3 catalysts. Ind Eng Chem Res 50:2791–2799. doi:10.1021/ie100824d

    Article  Google Scholar 

  22. Priecel P, Kubička D, Čapek L et al (2011) The role of Ni species in the deoxygenation of rapeseed oil over NiMo-alumina catalysts. Appl Catal A Gen 397:127–137. doi:10.1016/j.apcata.2011.02.022

    Article  CAS  Google Scholar 

  23. Priecel P, Čapek L, Kubička D et al (2011) The role of alumina support in the deoxygenation of rapeseed oil over NiMo-alumina catalysts. Catal Today 176:409–412. doi:10.1016/j.cattod.2010.11.022

    Article  CAS  Google Scholar 

  24. Bezergianni S, Dimitriadis A, Sfetsas T, Kalogianni A (2010) Hydrotreating of waste cooking oil for biodiesel production. Part II: effect of temperature on hydrocarbon composition. Bioresour Technol 101:7658–7660. doi:10.1016/j.biortech.2010.04.043

    Article  CAS  Google Scholar 

  25. Bezergianni S, Dimitriadis A, Kalogianni A, Pilavachi PA (2010) Hydrotreating of waste cooking oil for biodiesel production. Part I: effect of temperature on product yields and heteroatom removal. Bioresour Technol 101:6651–6656. doi:10.1016/j.biortech.2010.03.081

    Article  CAS  Google Scholar 

  26. Toba M, Abe Y, Kuramochi H et al (2011) Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catal Today 164:533–537. doi:10.1016/j.cattod.2010.11.049

    Article  CAS  Google Scholar 

  27. Yenumala SR, Maity SK, Shee D (2016) Hydrodeoxygenation of Karanja Oil over supported nickel catalysts: influence of support and nickel loading. Catal Sci Technol 6:3156–3165. doi:10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  28. Gong S, Shinozaki A, Shi M, Qian EW (2012) Hydrotreating of jatropha oil over alumina based catalysts. Energy Fuels 26:2394–2399. doi:10.1021/ef300047a

    Article  CAS  Google Scholar 

  29. Liu Y, Sotelo-Boyás R, Murata K et al (2011) Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids. Energy Fuels 25:4675–4685. doi:10.1021/ef200889e

    Article  CAS  Google Scholar 

  30. Murata K, Liu Y, Inaba M, Takahara I (2010) Production of synthetic diesel by hydrotreatment of jatropha oils using Pt-Re/H-ZSM-5 catalyst. Energy Fuels 24:2404–2409. doi:10.1021/ef901607t

    Article  CAS  Google Scholar 

  31. Kumar R, Rana BS, Tiwari R et al (2010) Hydroprocessing of jatropha oil and its mixtures with gas oil. Green Chem 12:2232–2239. doi:10.1039/c0gc00204f

    Article  CAS  Google Scholar 

  32. Santillan-Jimenez E, Morgan T, Lacny J et al (2013) Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel. Fuel 103:1010–1017. doi:10.1016/j.fuel.2012.08.035

    Article  CAS  Google Scholar 

  33. Szarvas T, Eller Z, Kasza T et al (2015) Radioisotopic investigation of the oleic acid-1-14C HDO reaction pathways on sulfided Mo/P/Al2O3 and NiW/Al2O3 catalysts. Appl Catal B Environ 165:245–252. doi:10.1016/j.apcatb.2014.09.078

    Article  CAS  Google Scholar 

  34. Selishcheva SA, Lebedev MY, Reshetnikov SI et al (2014) Kinetics of the hydrotreatment of rapeseed oil fatty acid triglycerides under mild conditions. Catal Ind 6:60–66. doi:10.1134/S2070050414010097

    Article  Google Scholar 

  35. Zhang H, Lin H, Wang W et al (2014) Hydroprocessing of waste cooking oil over a dispersed nano catalyst: kinetics study and temperature effect. Appl Catal B Environ 150–151:238–348. doi:10.1016/j.apcatb.2013.12.006

    Article  Google Scholar 

  36. Palla VCS, Shee D, Maity SK (2014) Kinetics of hydrodeoxygenation of octanol over supported nickel catalysts: a mechanistic study. RSC Adv 4:41612–41621. doi:10.1039/C4RA06826B

    Article  Google Scholar 

  37. Kumar P, Yenumala SR, Maity SK, Shee D (2014) Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: effects of supports. Appl Catal A Gen 471:28–38. doi:10.1016/j.apcata.2013.11.021

    Article  CAS  Google Scholar 

  38. Ayodele OB, Lethesh KC, Gholami Z, Uemura Y (2016) Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters. J Energy Chem 25:158–168. doi:10.1016/j.jechem.2015.08.017

    Article  Google Scholar 

  39. Dhanala V, Maity SK, Shee D (2013) Steam reforming of isobutanol for the production of synthesis gas over Ni/γ-Al2O3 catalysts. RSC Adv 3:24521. doi:10.1039/C4RA04783D

    Article  CAS  Google Scholar 

  40. Safamirzaei M, Modarress H (2011) Hydrogen solubility in heavy n-alkanes; modeling and prediction by artificial neural network. Fluid Phase Equilib 310:150–155. doi:10.1016/j.fluid.2011.08.004

    Article  CAS  Google Scholar 

  41. Berenblyum AS, Danyushevsky VY, Katsman EA et al (2010) Production of engine fuels from inedible vegetable oils and fats. Pet Chem 50:305–311. doi:10.1134/S0965544110040080

    Article  Google Scholar 

  42. Snåre M, Kubičková I, Mäki-Arvela P et al (2008) Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87:933–945. doi:10.1016/j.fuel.2007.06.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Department of Science and Technology, New Delhi, India (DST/TSG/AF/2010/65-G dated 17.11.2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Maity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yenumala, S.R., Maity, S.K. & Shee, D. Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reac Kinet Mech Cat 120, 109–128 (2017). https://doi.org/10.1007/s11144-016-1098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1098-2

Keywords

Navigation