Skip to main content
Log in

Immobilized Cu(II)–Schiff base complex on modified Fe3O4 nanoparticles as catalysts in the oxidation of o-phenylenediamine to 2,3-diaminophenazine

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A heterogeneous and magnetically recoverable nanocatalyst was conveniently synthesized via covalent anchoring of Cu(II)–Schiff base complex on modified Fe3O4@SiO2 nanoparticles yielding Fe3O4@SiO2–Cu(II). The resulting material was characterized by scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transform infrared spectroscopy and elemental analysis. The resulting nanocomposites were utilized as a catalyst for oxidation of o-phenylenediamine to 2,3-diaminophenazine in the presence H2O2 in aqueous solution. The data were fitted to the Michaelis–Menten model and the parameters K m and V max were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuah E, Toh S, Yee J, Ma Q, Gao Z (2016) Chem Eur J 22:8404–8430

    Article  CAS  Google Scholar 

  2. Ragg R, Tahir MN, Tremel W (2015) Eur J Inorg Chem 1906–1915

  3. Gao L, Zhuang J, Nie L, Zhang J, Gu N, Wang T, Feng J, Yang D, Oerrett S, Yan X (2007) Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  4. Yu Z, Park Y, Chen L, Zhao B, Jung YM, Cong Q (2015) ACS Appl Mater Interfaces 42:23472–23480

    Article  Google Scholar 

  5. Yuan H, Cai R, Pan Z (2003) Anal Lett 36:277–286

    Article  CAS  Google Scholar 

  6. Mu J, He Y, Wang Y (2016) Talanta 148:22–28

    Article  CAS  Google Scholar 

  7. Thawari AG, Rao CP (2016) ACS Appl Mater Interfaces 8:10392–10402

    Article  CAS  Google Scholar 

  8. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1046

    Article  CAS  Google Scholar 

  9. Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    Article  CAS  Google Scholar 

  10. Tolman WB (1997) Acc Chem Res 30:227–237

    Article  CAS  Google Scholar 

  11. Serrano-Plana J, Garcia-Bosch I, Company A, Costas M (2015) Acc Chem Res 48:2397–2406

    Article  CAS  Google Scholar 

  12. Itoh S (2015) Acc Chem Res 48:2066–2074

    Article  CAS  Google Scholar 

  13. Kakuda S, Peterson RL, Ohkubo K, Karlin KD, Fukuzumi S (2013) J Am Chem Soc 135:6513–6522

    Article  CAS  Google Scholar 

  14. Leutbecher H, Constantin M-A, Mika S, Conrad J, Beifuss U (2011) Tetrahedron Lett 52:605–608

    Article  CAS  Google Scholar 

  15. Tarcha PJ, Chu VP, Whittern D (1987) Anal Biochem 165:230–233

    Article  CAS  Google Scholar 

  16. Griess P (1871) J Prakt Chem 3:143–144

    Article  Google Scholar 

  17. Németh S, Simándi L (1982) J Mol Catal 14:87–93

    Article  Google Scholar 

  18. Németh S, Simandi LI (1983) Inorg Chem 22:3151–3155

    Article  Google Scholar 

  19. Khattar R, Yadav A, Mathur P (2015) Spectrochim Acta Mol Biomol Spectrosc 142:375–381

    Article  CAS  Google Scholar 

  20. Tyagi N, Mathur P (2012) Spectrochim Acta Mol Biomol Spectrosc 96:759–767

    Article  CAS  Google Scholar 

  21. Maynard BA, Tutson CD, Lynn KS, Pugh CW, Gorden AEV (2016) Tetrahedron Lett 57:472–475

    Article  CAS  Google Scholar 

  22. Dalui A, Pradhan B, Thupakula U, Khan AH, Kumar GS, Ghosh T, Satpatib B, Acharya S (2015) Nanoscale 7:9062–9074

    Article  CAS  Google Scholar 

  23. Kima M-C, Lee S-Y (2015) Nanoscale 7:17063–17070

    Article  Google Scholar 

  24. Bhat PB, Bhat BR (2015) New J Chem 39:4933–4938

    Article  CAS  Google Scholar 

  25. He D, Wu Y, Xu B-Q (2007) Eur Polym J 43:3703–3709

    Article  CAS  Google Scholar 

  26. Buzoglu L, Maltas E, Ozmen M, Yildiz S (2014) Colloids Surf A Physicochem Eng Aspects 442:139–145

    Article  CAS  Google Scholar 

  27. Li W, Deng Y, Wu Z, Qian X, Yang J, Wang Y, Gu D, Zhang F, Tu B, Zhao D (2011) J Am Chem Soc 133:15830–15833

    Article  CAS  Google Scholar 

  28. Moradi-Shoeili Z, Zare M, Bagherzadeh M, Özkar S, Akbayrak S (2016) J Coord Chem 69:668–677

    Article  CAS  Google Scholar 

  29. Le X, Dong Z, Jin Z, Wang Q, Ma J (2014) Catal Commun 53:47–52

    Article  CAS  Google Scholar 

  30. Moradi-Shoeili Z, Amini Z, Boghaei DM, Notash B (2013) Polyhedron 53:76–82

    Article  CAS  Google Scholar 

  31. Sun J, Yu G, Liu L, Li Z, Kan Q, Huob Q, Guan J (2014) Catal Sci Technol 4:1246–1252

    Article  CAS  Google Scholar 

  32. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, London

    Book  Google Scholar 

  33. Kemmer G, Keller S (2010) Nat Protoc 5:267–281

    Article  CAS  Google Scholar 

  34. Mu J, Wang Y, Zhao M, Zhang L (2012) Chem Commun 48:2540–2542

    Article  CAS  Google Scholar 

  35. Jia H, Yang D, Han X, Cai J, Liu H, He W (2016) Nanoscale 8:5938–5945

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Guilan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Moradi-Shoeili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi-Shoeili, Z. Immobilized Cu(II)–Schiff base complex on modified Fe3O4 nanoparticles as catalysts in the oxidation of o-phenylenediamine to 2,3-diaminophenazine. Reac Kinet Mech Cat 120, 323–332 (2017). https://doi.org/10.1007/s11144-016-1085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1085-7

Keywords

Navigation