Skip to main content
Log in

Structural and microstructural analysis of different CaO–NiO composites and their application as CO2 or CO–O2 captors

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, CaO–NiO mixed oxide powders were prepared by mechanical mixing and incipient impregnation methods. The samples were characterized structurally and microstructurally, where it was determined that microstructural properties changed depending on the NiO addition method. The CO2 and CO–O2 capture evaluations were performed in a thermogravimetric analyzer. These results showed that the presence of nickel significantly modified the CO2 and CO capture processes. In both cases, the CO2 or CO capture temperature was shifted to lower values in the CaO–NiO composites in comparison to the CaO sample. Nevertheless, the carbon oxide captures seemed to decrease as a function of the nickel addition. It was associated to the nickel superficial deposition over the CaO particles. On the other hand, the CO–O2 oxidation was importantly enhanced and maintained, for long times, with the presence of nickel independently of the calcium oxide carbonation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O’Hare D, Zhong Z (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci 7:3478–3518

    Article  CAS  Google Scholar 

  2. Cox P, Jones C (2008) Illuminating the modern dance of climate and CO2. Science 321:1642–1644

    Article  CAS  Google Scholar 

  3. Ahn J, Brook EJ (2008) Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science 322:83–85

    Article  CAS  Google Scholar 

  4. Parry M, Canziani O, Palutikof J (2008) Key IPCC conclusions on climate change impacts and adaptations. World Meteorol Organ Bull 57(2):78–85

    Google Scholar 

  5. Kumar S, Saxena SK (2014) A comparative study of CO2 sorption properties for different oxides. Mater Renew Sustain Energy 3:1–15

    Google Scholar 

  6. Abanades JC, Anthony EJ, Wang J, Oakey JE (2005) Fluidized bed combustion systems integrating CO2 capture with CaO. Environ Sci Technol 39(8):2861–2866

    Article  CAS  Google Scholar 

  7. Silaban A, Harrison DP (1995) High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO(s) and CO2 (gas). Chem Eng Commun 137:177–190

    Article  CAS  Google Scholar 

  8. Liu X, Piao X, Wang Y, Zhu S, He H (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87:216–221

    Article  CAS  Google Scholar 

  9. Yan S, Lu H, Liang B (2008) Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. Energy Fuels 22(1):646–651

    Article  CAS  Google Scholar 

  10. Hughes R, Lu D, Anthony E, Wu Y (2004) Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor. Ind Eng Chem Res 43:5529–5539

    Article  CAS  Google Scholar 

  11. Ring AT (1996) Fundamentals of Ceramic Powder Processing and Synthesis. Academic Press, New York

    Google Scholar 

  12. Mohammadi M, Lahijani P, Mohamed AR (2014) Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture: experimental and kinetic studies. Chem Eng J 243:455–464

    Article  CAS  Google Scholar 

  13. Liu C, Zhang L, Deng J, Mu Q, Dai H, He H (2008) Surfactant-aided hydrothermal synthesis and carbon dioxide adsorption behavior of three-dimensionally mesoporous calcium oxide single-crystallites with tri-, tetra-, and hexagonal morphologies. J Phys Chem C 112:19248–19256

    Article  CAS  Google Scholar 

  14. Choudhary VR, Rajput AM, Prabhakar B (1992) Low temperature oxidative conversion of methane to syngas over NiO–CaO catalyst. Catal Lett 15:363–370

    Article  CAS  Google Scholar 

  15. Manovic V, Anthony EJ (2008) Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environ Sci Technol 42:4170–4174

    Article  CAS  Google Scholar 

  16. Choudhary VR, Rajput AM (1996) Simultaneous carbon dioxide and steam reforming of methane to syngas over NiO-CaO catalyst. Ind Eng Chem Res 35:3934–3939

    Article  CAS  Google Scholar 

  17. Lee ZH, Ichikawa S, Lee KT, Mohamed AR (2015) The role of nickel oxide additive in lowering the carbon dioxide sorption temperature of CaO. J Energy Chem 24:225–231

    Article  Google Scholar 

  18. Samantaray S, Pradhan DK, Hota G, Mishra BG (2012) Catalytic application of CeO2–CaO nanocomposite oxide synthesized using amorphous citrate process toward the aqueous phase one pot synthesis of 2-amino-2-chromenes. Chem Eng J 193–194:1–9

    Article  Google Scholar 

  19. Gaki A, Chrysafi R, Kakali G (2007) Chemical synthesis of hydraulic calcium aluminate compounds using the Pechini technique. J Eur Ceram Soc 27:1781–1784

    Article  CAS  Google Scholar 

  20. Mastin J, Aranda A, Meyer J (2011) New synthesis method for CaO-based synthetic sorbents with enhanced properties for high-temperature CO2-capture. Energy Procedia 4:1184–1191

    Article  CAS  Google Scholar 

  21. Moradi G, Mohadesi M, Hojabri Z (2014) Biodiesel production by CaO/SiO2 catalyst synthesized by the sol–gel process. Reac Kinet Mech Cat 113:169–186

    Article  CAS  Google Scholar 

  22. Abanades JC, Anthony JE, Lu DY, Salvador C, Alvarez D (2004) Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE J 20:1614–1622

    Article  Google Scholar 

  23. Lenggoro IW, Itoh Y, Iida N, Okuyama K (2003) Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Mater Res Bull 38:1819–1827

    Article  CAS  Google Scholar 

  24. Cho YB, Seo G, Chang DR (2009) Transesterification of tributyrin with methanol over calcium oxide catalysts prepared from various precursors. Fuel Process Technol 90:1252–1258

    Article  CAS  Google Scholar 

  25. Zhang X, Zhang Q, Tsubaki N, Tan Y, Han Y (2015) Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO2 matrix. Fuel 147:243–252

    Article  CAS  Google Scholar 

  26. Luo MF, Zhong YJ, Yuan XX, Zheng XM (1997) TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation. Appl Catal A 162:121–131

    Article  CAS  Google Scholar 

  27. Kang M, Song MW, Lee ChH (2003) Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts. Appl Catal A 251:143–156

    Article  CAS  Google Scholar 

  28. Sayle TXT, Parker SC, Catlow RA (1992) Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon monoxide. J Chem Soc, Chem Commun 14:977–978

    Article  Google Scholar 

  29. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2004) Carbon monoxide oxidation over CuO/CeO2 catalysts. Catal Today 93–95:191–198

    Article  Google Scholar 

  30. Cao JL, Wang Y, Yu XL, Wang SR, Wu SH, Yuan ZY (2008) Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl Catal B 79:26–34

    Article  CAS  Google Scholar 

  31. Ross RH (2012) Heterogeneous catalysis, fundamentals and applications. Elsevier, Barcelona

    Google Scholar 

  32. Kadossov E, Burghaus U (2008) Adsorption kinetics and dynamics of CO, NO and CO2 on reduced CaO (100). J Phys Chem C 112:7390–7400

    Article  CAS  Google Scholar 

  33. Wang M, Wang H, Zhao N, Wei W, Sun Y (2006) Synthesis of dimethyl carbonate from urea and methanol over solid base catalysts. Catal Commun 7:6–10

    Article  Google Scholar 

  34. Li Q, Zhang W, Zhao N, Wei W, Sun Y (2006) Synthesis of cyclic carbonates from urea and diols over metal oxides. Catal Today 115:11–116

    Article  Google Scholar 

  35. Sakuma K, Miyajima K, Mafuné F (2013) Oxidation of CO by nickel oxide clusters revealed by post heating. J Phys Chem A 117:3260–3265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the project PAPIIT-UNAM (IN-101916) and SENER-CONACYT (251801). A. Cruz-Hernandez thanks to CONACYT for financial support. The authors thank to Adriana Tejeda, Roberto Hernández and Samuel Tehuacanero-Cuapa for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heriberto Pfeiffer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Hernández, A., Alcántar-Vázquez, B., Arenas, J. et al. Structural and microstructural analysis of different CaO–NiO composites and their application as CO2 or CO–O2 captors. Reac Kinet Mech Cat 119, 445–455 (2016). https://doi.org/10.1007/s11144-016-1066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1066-x

Keywords

Navigation