Skip to main content
Log in

Kinetic modeling of the decomposition of beudantite in NaOH medium

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This piece of work presents a study on the reaction of beudantite in NaOH medium under a wide range of experimental conditions. The partial decomposition of solids indicates the presence of an unreacted beudantite core, a reaction front and a halo of amorphous decomposition gel made of iron hydroxides and lead, through which sulfate and arsenate ions diffuse from the beudantite into the medium, while hydroxide ions from the medium diffuse through the gel onto the core of spherical particles of beudantite. We studied the dependence of the reaction rate on (OH−1) concentration, temperature and particle size in order to determine the reaction order and activation energy of the decomposition process of beudantite. A comparative study on the experimental rate constants of the alkaline decomposition of beudantite and other arsenic jarosites was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kai YC, Kuo CL, Sheng CL, Tsun-Kuo C, Ming KW (2010) J Hazard Mater 181:1066–1071

    Article  Google Scholar 

  2. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (2000) Environ Health Perspect 108:393–397

    Article  CAS  Google Scholar 

  3. Stollen WKG, Breit GN, Welch AH, Yount JC, Whitney JW, Foster AL, Uddin MN, Majunder RK, Ahmed N (2007) Sci Total Environ 379:133–150

    Article  Google Scholar 

  4. Armienta MA, Rodríguez R, Aguayo A, Ceniceros N, Villaseñor G, Cruz O (1997) Hydrogeol J 5:39–46

    Article  Google Scholar 

  5. Armienta MA, Rodríguez R, Cruz O (1997) Bull Environ Contam Toxicol 59:583–589

    Article  CAS  Google Scholar 

  6. Espinosa E, Armienta MA, Cruz O, Aguayo A, Ceniceros N (2009) Environ Geol 58:1467–1477

    Article  CAS  Google Scholar 

  7. Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Water Air Soil Pollut 152:129–152

    Article  CAS  Google Scholar 

  8. Rosas I, Belmont R, Armienta MA, Baez A (1999) Water Air Soil Pollut 112:133–149

    Article  CAS  Google Scholar 

  9. Roussell C, Néel C, Bril H (2000) Sci Total Environ 263:209–219

    Article  Google Scholar 

  10. Casiot C, Lebrun S, Morin G, Bruneel O, Personné JC, Elbaz-Poulichet F (2005) Sci Total Environ 347:122–130

    Article  CAS  Google Scholar 

  11. Flores AN, Rubio LMD (2010) Environ Earth Sci 60:121–138

    Article  CAS  Google Scholar 

  12. Kocourková E, Sracek O, Houzar S, Cempírek J, Losos Z, Filip J, Hršelová P (2011) J Geochem Explor 110:61–73

    Article  Google Scholar 

  13. Salzsauler KA, Sidenko NV, Sherriff B (2005) Appl Geochem 20:2303–2314

    Article  CAS  Google Scholar 

  14. Nordstrom DK, Alpers CN (1999) Proc Natl Acad Sci USA 96:3455–3462

    Article  CAS  Google Scholar 

  15. Gieré R, Sidenko NV, Lazareva EV (2003) Appl Geochem 18:1347–1359

    Article  Google Scholar 

  16. Romero FM, Prol-Ledesma RM, Canet C, Alvares NL, Pérez R (2010) Appl Geochem 25:716–727

    Article  CAS  Google Scholar 

  17. Lee Y, Um I, Yoon J (2003) Environ Sci Technol 37:5750–5756

    Article  CAS  Google Scholar 

  18. WHO (1993) Guidelines for drinking-water quality. World Health Organization, Geneva, Switzerland

    Google Scholar 

  19. Environmental Protection Agency (2015) http://www.epa.gob. Accessed March 2015

  20. Kartinen EO, Martin CJ (1995) Desalination 103:79–88

    Article  CAS  Google Scholar 

  21. Chang SD (1994) Critical issues in water and waste-water treatment. ASCE, Boulder

    Google Scholar 

  22. Johnston R, Heijnen H, Wurzel P (2001) Safe water technology. In: Gneova (ed) Unite Nations synthesis report on arsenic in drinking water. World Health Organization, Geneva, Switzerland

  23. Lenntech (2015) http://www.lenntech.es/plomo_y_agua.htm. Accessed March 2015

  24. Romero FM, Núñez L, Gutiérrez ME, Armienta MA, Ceniceros AE (2011) Arch Environ Contam Toxicol 60:191–203

    Article  CAS  Google Scholar 

  25. Alcobe X, Bassas J, Tarruella I, Roca A, Viñals J (2001) Mater Sci Forum 378:671–676

    Article  Google Scholar 

  26. Szymanski JK (1988) Can Mineral 26:923–932

    CAS  Google Scholar 

  27. Jambor JL (1999) Can Mineral 37:1323–1341

    CAS  Google Scholar 

  28. Botinelly T (1976) J Res US Geol Survey 4:213–216

    CAS  Google Scholar 

  29. Romero FM, Armienta MA, González G (2007) Appl Geochem 22:109–127

    Article  CAS  Google Scholar 

  30. Viñals J, Roca A, Arranz M (2003) Can Mineral 42:29–40

    Google Scholar 

  31. Patiño F, Viñals J, Roca A, Núñez C (1994) Hydrometallurgy 34:279–291

    Article  Google Scholar 

  32. Smith AML, Dubbin WE, Wright K, Hudson-Edwards KA (2006) Chem Geol 229:344–361

    Article  CAS  Google Scholar 

  33. Reyes IA, Patiño F, Rivera I, Flores MU, Reyes M, Hernández J (2011) J Braz Chem Soc 22:2260–2267

    Article  CAS  Google Scholar 

  34. Flores MU, Patiño F, Reyes IA, Rivera I, Reyes M, Juárez JC (2012) J Braz Chem Soc 23:1018–1023

    Article  CAS  Google Scholar 

  35. Patiño F, Flores MU, Reyes IA, Reyes M, Hernández J, Rivera I, Juárez JC (2013) Geochem Trans. doi:10.1186/1467-4866-14-2

  36. Patiño F, Reyes IA, Flores MU, Pandiyan T, Roca A, Reyes M, Hernández J (2013) Hydrometallurgy 137:115–125

    Article  Google Scholar 

  37. Islas H, Patiño F, Flores MU, Reyes IA, Reyes M, Hernández J (2013) In: Strabe (ed) European metallurgical conference—process metallurgy, Weimar

  38. Roca A, Patiño F, Viñals J, Núñez C (1993) Hydrometallurgy 34:341–357

    Article  Google Scholar 

  39. Lide (2009) Handbook of chemistry and physics, Chapter 8, 89th edn. CRC Press, Boston

  40. Patiño F, Reyes IA, Rivera I, Reyes M, Hernández J, Pérez M (2011) J Mex Chem Soc 55:208–213

    Google Scholar 

  41. 41. Sohn HY, Wadsworth ME (1986) In Trillas, México (ed) Cinética de los Procesos de la Metalurgia Extractiva, México

  42. Ballester A, Verdeja LF, Sancho J (2000) In Síntesis (ed) Metalurgia Extractiva, vol. 1. Fundamentos, Madrid

  43. Levenspiel O (2009) In Reverté (ed) Ingeniería de las Reacciones Químicas, Madrid, España

  44. Méndez JE, Flores MU, Patiño F, Reyes M, Juárez JC, Reyes IA, Palacios EG (2015) In Strabe (ed) European Metallurgical conference—process metallurgy, Düssseldorf, Germany

Download references

Acknowledgments

The authors would like to thank to the CONACyT and Iván Reyes would like to thank to the Institute of Metallurgy of the Autonomous University of San Luis Potosi by the Professorship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizraim U. Flores.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patiño, F., Flores, M.U., Reyes, I.A. et al. Kinetic modeling of the decomposition of beudantite in NaOH medium. Reac Kinet Mech Cat 119, 367–379 (2016). https://doi.org/10.1007/s11144-016-1065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1065-y

Keywords

Navigation