Skip to main content
Log in

Liquid phase hydroxylation of benzene to phenol over vanadyl acetylacetonate supported on amine functionalized SBA-15

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

An efficient catalyst for the direct hydroxylation of benzene to phenol with oxygen as the oxidant was developed by immobilizing the homogeneous vanadyl(IV) acetylacetonate (VO(acac)2) on SBA-15 in which the support surface was functionalized by (3-aminopropyl)triethoxysilane. The as-prepared catalyst was characterized by various techniques including field-emission scanning electron microscopy, X-ray diffraction, nitrogen adsorption and desorption, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results show that the homogeneous vanadium species can be successfully immobilized on the amine functionalized SBA-15 and exhibits better catalytic performance in the hydroxylation of benzene with oxygen compared to other catalysts reported in the literature. The phenol yield significantly depends on the reaction conditions. Under the optimized reaction conditions, the phenol yield can reach 13.3 %, and the as-fabricated V/NH2-SBA-15 shows better stability against leaching owning to strong interaction between vanadium atoms and amine group as compared to the V/SBA-15 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee B, Naito H, Hibino T (2012) Angew Chem Int Ed 124:455–459

    Article  Google Scholar 

  2. Hu LY, Yue B, Chen XY, He HY (2014) Catal Commun 43:179–183

    Article  CAS  Google Scholar 

  3. Yang H, Wu Q, Li J, Dai W, Zhang HY, Lu D, Gao S, You WS (2013) Appl Catal A 457:21–25

    Article  CAS  Google Scholar 

  4. Ohkubo K, Kobayashi T, Fukuzumi S (2011) Angew Chem Int Ed 50:8652–8655

    Article  CAS  Google Scholar 

  5. Xu JQ, Liu HH, Yang RG, Li GY, Hu CW (2012) Chin J Catal 33:1622–1630

    Article  CAS  Google Scholar 

  6. Yang J-H, Sun G, Gao YJ, Zhao HB, Yang P, Tan J, Lu A-H, Ma D (2013) Energy Environ Sci 6:793–798

    Article  CAS  Google Scholar 

  7. Al-Megren HA, Poerio T, Brunetti A, Barbien G, Drioli E, AL-Hedaib BSA, Al-Hamdan ASN, Al-Kinany MC (2013) Sep Purif Technol 107:195–203

    Article  CAS  Google Scholar 

  8. Xin HC, Koekkoek A, Yang QH, van Santen R, Li C, Hensen EJM (2009) Chem Commun 48:7590–7592

    Article  Google Scholar 

  9. Koekkoek AJJ, Kim W, Degirmenci V, Xin H, Ryoo R, Hensen EJM (2013) J Catal 299:81–89

    Article  CAS  Google Scholar 

  10. Guo C, Du WD, Chen G, Shi L, Sun Q (2013) Catal Commun 37:19–22

    Article  CAS  Google Scholar 

  11. Wang WT, Ding GD, Jiang T, Zhang P, Wu TB, Han BX (2013) Green Chem 15:1150–1154

    Article  CAS  Google Scholar 

  12. Chen JQ, Gao S, Li J, Lv Y (2011) Chin J Catal 32:1446–1451

    Article  CAS  Google Scholar 

  13. Chen X, Zhao WG, Wang F, Xu J (2012) J Nat Gas Chem 21:481–487

    Article  CAS  Google Scholar 

  14. Xu D, Jia LH, Guo XF (2012) Catal Lett 142:1251–1261

    Article  CAS  Google Scholar 

  15. Zhao LN, Dong LY, Zhan XL, Cheng Y, Zhu YJ, Yuan FL, Fu HG (2012) Catal Lett 142:619–626

    Article  CAS  Google Scholar 

  16. Song SQ, Jiang SJ, Rao RC, Yang HX, Zhang AM (2011) Appl Catal A 401:215–219

    Article  CAS  Google Scholar 

  17. Kanzaki H, Kitamura T, Hamada R, Nishiyama S, Tsuruya S (2004) J Mol Catal A 208:203–211

    Article  CAS  Google Scholar 

  18. Yamaguchi S-T, Sumimoto S, Ichihashi Y, Nishiyama S, Tsuruya S (2005) Ind Eng Chem Res 44:1–7

    Article  CAS  Google Scholar 

  19. Zhang J, Tang Y, Li GY, Hu CW (2005) Appl Catal A 278:251–261

    Article  CAS  Google Scholar 

  20. Kharat AN, Moosavikia S, Jahromi BT, Badiei A (2011) J Mol Catal A 348:14–19

    Article  CAS  Google Scholar 

  21. Liu YY, Murata K, Inaba M (2005) Catal Commun 6:679–683

    Article  CAS  Google Scholar 

  22. Yang H, Li J, Wang LY, Dai W, Lv Y, Gao S (2013) Catal Commun 35:101–104

    Article  CAS  Google Scholar 

  23. Zhou CJ, Wang J, Leng Y, Ge HQ (2010) Catal Lett 135:120–125

    Article  CAS  Google Scholar 

  24. Ge HQ, Leng Y, Zhou CJ, Wang J (2008) Catal Lett 124:324–329

    Article  CAS  Google Scholar 

  25. Ge HQ, Leng Y, Zhang FM, Zhou CJ, Wang J (2008) Catal Lett 124:250–255

    Article  CAS  Google Scholar 

  26. Zhao PP, Zhou Y, Liu YQ, Wang J (2013) Chin J Catal 34:2118–2124

    Article  CAS  Google Scholar 

  27. Anand N, Reddy KHP, Swapna V, Rao KSR, Burri DR (2011) Microporous Mesoporous Mater 143:132–140

    Article  CAS  Google Scholar 

  28. Villanneau R, Marzouk A, Wang Y, Djamaa AB, Laugel G, Proust A, Launay F (2013) Inorg Chem 52:2958–2965

    Article  CAS  Google Scholar 

  29. Pereira C, Silva AR, Carvalho AP, Pires J, Freire C (2008) J Mol Catal A 283:5–14

    Article  CAS  Google Scholar 

  30. Gao XH, Xu J (2006) Catal Lett 111:203–205

    Article  CAS  Google Scholar 

  31. Gao XH, Lu XC, Xu J (2009) Chin J Chem 27:2155–2158

    Article  CAS  Google Scholar 

  32. Oliveira P, Machado A, Ramos AM, Fonseca IM, Braz Fernandes FM, Botelho do Rego AM, Vital J (2007) Catal Commun 8:1366–1372

  33. Du GA, Lim SY, Pinault M, Wang C, Fang F, Pfefferle L, Haller GL (2008) J Catal 253:74–90

    Article  CAS  Google Scholar 

  34. Dorbes S, Pereira C, Andrade M, Barros D, Pereira AM, Rebelo SLH, Araújo JP, Pires J, Carvalho AP, Freire C (2012) Microporous Mesoporous Mater 160:67–74

    Article  CAS  Google Scholar 

  35. Jarrais B, Pereira C, Silva AR, Carvalho AP, Pires J, Freire C (2009) Polyhedron 28:994–1000

    Article  CAS  Google Scholar 

  36. Yang Q-Y, Zhu Y, Tian L, Xie S-H, Pei Y, Li H, Li H-X, Qiao M-H, Fan K-N (2009) Appl Catal A 369:67–76

    Article  CAS  Google Scholar 

  37. Hernández-Morales V, Nava R, Acosta-Silva YJ, Macías-Sánchez SA, Pérez-Bueno JJ, Pawelec B (2012) Microporous Mesoporous Mater 160:133–142

    Article  Google Scholar 

  38. Miyahara T, Kanzaki H, Hamada R, Kuroiwa S, Nishiyama S, Tsuruy S (2001) J Mol Catal A 176:141–150

    Article  CAS  Google Scholar 

  39. Battistel E, Tassinari R, Fornaroli M (2003) J Mol Catal A 202:107–115

    Article  CAS  Google Scholar 

  40. Dong YL, Niu XY, Zhu YJ, Yuan FL, Fu HG (2011) Catal Lett 141:242–250

    Article  CAS  Google Scholar 

  41. Masumoto Y, Hamada R, Yokota K, Nishiyama S, Tsuruya S (2002) J Mol Catal A 184:215–222

    Article  CAS  Google Scholar 

  42. Xu D, Jia LH, Guo XF (2013) Chin J Catal 34:341–350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports the National High Technology Research and Development Program (2012AA03A606), the National Natural Science Foundation (21306081, 21125629), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) of China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizhi Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Jiang, H., Xing, W. et al. Liquid phase hydroxylation of benzene to phenol over vanadyl acetylacetonate supported on amine functionalized SBA-15. Reac Kinet Mech Cat 116, 535–547 (2015). https://doi.org/10.1007/s11144-015-0898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0898-0

Keywords

Navigation