Skip to main content
Log in

Direct Hydroxylation of Benzene to Phenol Over Mixed-Crystal Particles of Mesoporous VO x /TiO2 Catalyst Mixed-Crystal VO x /TiO2 for Benzene Hydroxylation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The influence of vanadium loading and calcination temperature on the catalytic performance of vanadia/TiO2 (mixed-crystal) catalysts for the selective hydroxylation of benzene was investigated. A series of VO x /TiO2 catalysts were prepared using a range of vanadium loadings (2.27–9.06 wt %) and calcination temperatures of 450–650 °C. The samples were characterized using thermogravimetry–differential thermal analysis, N2-adsorption, scanning electron microscopy, H2 temperature-programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that vanadium exists as monomeric and polymeric VO x and V2O5 crystal phases, depending on the amount of vanadium, accompanied by transformation of the TiO2 carrier from anatase to rutile. The influence of temperature on the anatase to rutile transformation was strong, and only a little anatase was transformed to rutile at temperatures below 550 °C. When the temperature was raised to 650 °C, rutile became the main crystal phase. Monodisperse vanadia/TiO2 (mainly anatase) catalysts are highly active in benzene hydroxylation to phenol, but aggregation of VO x and crystalline V2O5 supported on a rutile carrier lowers the catalytic activity. In addition, the catalytic performances of the various catalysts in hydroxylation of benzene to phenol were investigated and possible reaction mechanisms are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Hoelderich WF (2000) Appl Catal A Gen 194–195:487

  2. Pirutko LV, Chernyavsky VS, Starokon EV, Ivanov AA, Kharitonov AS, Panov GI (2009) Appl Catal B Environ 91:174

    Article  CAS  Google Scholar 

  3. Liu YY, Murata K, Inaba M (2005) Catal Commun 6:679

    Article  CAS  Google Scholar 

  4. Bortolotto L, Dittmeyer R (2010) Sep Purif Technol 73:51

    Article  CAS  Google Scholar 

  5. Chen JQ, Gao S, Xu J (2008) Catal Commun 9:728

    Article  CAS  Google Scholar 

  6. Feng SJ, Pei SP, Yue B, Ye L, Qian LP, He HY (2009) Catal Lett 131:458

    Article  CAS  Google Scholar 

  7. Ratnasamy P, Srinivas D, Knözinger H (2004) Adv Catal 48:1

    Article  CAS  Google Scholar 

  8. Song SQ, Yang HX, Rao RC, Liu HD, Zhang AM (2010) Appl Catal A Gen 375:265

    Article  CAS  Google Scholar 

  9. Penuka NK (2010) J Mol Catal A: Chem 316:126

    Article  Google Scholar 

  10. Liu T, Wei XY, Zhao JJ, Xie HS, Wang TT, Zong ZM (2010) Minist Sci Technol 20:0093

    CAS  Google Scholar 

  11. Pezhman A, Alireza B, Amir K, Ghodsi MZ (2011) Chin J Catal 32:258

    Article  Google Scholar 

  12. Kong Y, Xu XJ, Wu Y, Zhang R, Wang J (2008) Chin J Catal 29:385

    Article  CAS  Google Scholar 

  13. Qi XY, Li JY, Ji TH, Wang YJ, Feng LL, Zhu YL, Fan XT, Zhang C (2009) Microporous Mesoporous Mater 122:36

    Article  CAS  Google Scholar 

  14. Zhu YJ, Dong YL, Zhao LN, Yuan FL, Fu HG (2008) Chin J Catal 29:1067

    Article  CAS  Google Scholar 

  15. Dittmeyer R, Bortolotto L (2011) Appl Catal A Gen 391:311

    Article  CAS  Google Scholar 

  16. Joseph JK, Singhal S, Jain SL, Sivakumaran R, Kumar B, Sain B (2009) Catal Today 141:211

    Article  CAS  Google Scholar 

  17. Zhu YJ, Dong YL, Zhao LN, Yuan FL (2010) J Mol Catal A: Chem 315:205

    Article  CAS  Google Scholar 

  18. Chen JQ, Gao S, Li J, Lv Y (2011) Chin J Catal 32:1446

    Article  CAS  Google Scholar 

  19. Yin JS, Jia LH, Guo XF, Zhang XJ (2012) Chin J Appl Chem 29:57

    CAS  Google Scholar 

  20. Mogkhonsi T, Kershenbaum L (1998) Appl Catal A Gen 170:33

    Article  Google Scholar 

  21. Bucharsky EC, Schell G, Oberacker R, Hoffmann MJ (2009) J Eur Ceram Soc 29:1955

    Article  CAS  Google Scholar 

  22. Centi G, Pinelli D, Triforo F, Ghoussoub D, Guelton M, Gengembre L (1991) J Catal 130:238

    Article  CAS  Google Scholar 

  23. Centi G (1996) Appl Catal A Gen 147:267

    Article  CAS  Google Scholar 

  24. Narayana KV, Venugopal A, Rao KSR, Masthan SK, Rao VV, Rao PK (1998) Appl Catal A Gen 167:11

    Article  CAS  Google Scholar 

  25. Chen L, Li JH, Ge MF (2011) Chem Eng J 170:531

    Article  CAS  Google Scholar 

  26. Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A (1999) Appl Catal B Environ 22:63

    Article  CAS  Google Scholar 

  27. Reiche MA, Ortelli E, Baiker A (1999) Appl Catal B Environ 23:187

    Google Scholar 

  28. Rodella CB, Mastelaro VR (2003) J Phys Chem Sol 64:833

    Article  CAS  Google Scholar 

  29. Reddy BM, Mehdi S (1993) Reddy EP 20:317

    CAS  Google Scholar 

  30. Bulushev DA, Kiwi-Minsker L, Zaikovskii VI, Lapina OB, Ivanov AA, Reshetnikov SI, Penken A (2000) Appl Catal A Gen 202:243

    Article  CAS  Google Scholar 

  31. Martin ST, Morrison CL, Hoffmann MR (1994) J Phys Chem 98:13695

    Article  CAS  Google Scholar 

  32. Wang YD, Ma CL, Sun XD, Li HD (2003) Appl Catal A Gen 246:161

    Article  CAS  Google Scholar 

  33. Hongo T, Yamazaki A (2011) Microporous Mesoporous Mater 142:316

    Article  CAS  Google Scholar 

  34. Du JM, Liu ZM, Li ZH, Han BX, Huang Y, Gao YN (2005) Microporous Mesoporous Mater 83:19

    Article  CAS  Google Scholar 

  35. Lv CX, Zhou Y, Li H, Dang MM, Guo CC, Ou YC, Xiao B (2011) Appl Surf Sci 257:5104

    Article  CAS  Google Scholar 

  36. Hausinger G, Schmelz H, Knözinger H (1988) Appl Catal 39:267

    Article  CAS  Google Scholar 

  37. Yue WB, Xu XX, Irvine JTS, Attidekou PS, Liu C, He HY, Zhao DY, Zhou WZ (2009) Chem Mater 21:2540

    Article  CAS  Google Scholar 

  38. Kim DS, Han SJ, Kwak SY (2007) J Colloid Interface Sci 316:85

    Article  CAS  Google Scholar 

  39. Li Q, Yang HS, Qiu FM, Zhang XB (2011) J Hazard Mater 192:915

    Article  CAS  Google Scholar 

  40. Qian XF, Wan Y, Wen YL, Jia NQ, Li HX, Zhao DY (2008) J Colloid Interface Sci 328:367

    Article  CAS  Google Scholar 

  41. Zhu CL, Yu HL, Zhang Y, Wang TS, Ouyang QY, Qi LH, Chen YJ, Xue XY (2012) Appl Mater Inter 4:665

    Article  CAS  Google Scholar 

  42. Adamski A, Sojka Z, Dyrek K, Che M, Wendt G, Albrecht S (1999) Langmuir 15:5733

    Article  CAS  Google Scholar 

  43. Bond GC (1997) Appl Catal A Gen 157:91

    Article  CAS  Google Scholar 

  44. Sereda G, Marshall C, Libera JA, Dreessen J, Grady A, Turner M (2012) Catal Lett

  45. Nguyen LD, Loridant S, Launay H, Pigamo A, Dubois JL, Millet JMM (2006) J Catal 237:38

    Article  CAS  Google Scholar 

  46. Kang QM, Yuan BL, Xu JG, Fu ML (2011) Catal Lett 141:1371

    Article  CAS  Google Scholar 

  47. Silversmit G, Depla D, Poelman H, Marin GB, Gryse RD (2006) Surf Sci 600:3512

    Article  CAS  Google Scholar 

  48. Bayati MR, Fard FG, Moshfegh AZ (2010) Catal Lett 134:162

    Article  CAS  Google Scholar 

  49. Tuel A, Taârit YB (1993) Appl Catal A Gen 102:201

    Article  CAS  Google Scholar 

  50. Molinari R, Lavorato R, Poerio T (2012) Appl Catal A Gen 417–418:87

    Article  Google Scholar 

  51. Jian M, Zhu LF, Wang JY, Zhang J, Li GY, Hu CW (2006) J Mol Catal A: Chem 253:1

    Article  CAS  Google Scholar 

  52. Zhang J, Tang Y, Li GY, Hu CW (2005) J Mol Catal A: Chem 278:251

    CAS  Google Scholar 

  53. Wang JY, Hu CW, Jian M, Zhang J, Li GY (2006) J Catal 240:23

    Article  CAS  Google Scholar 

  54. Wang JY, Fu XH, Wang J, Hu CW (2009) Sci China, Ser B: Chem 52:2096

    Article  CAS  Google Scholar 

  55. Alekar NA, Indira V, Halligudi SB, Srinivas D, Gopinathan S, Gopinathan C (2000) J Mol Catal A: Chem 164:181

    Article  CAS  Google Scholar 

  56. Hari Prasad Rao PR, Ramaswamy AV, Patnasamy P (1992) J Catal 137:225

    Article  Google Scholar 

  57. Hari Prasad Rao PR, Ramaswamy AV (1993) Appl Catal A Gen 93:123

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21176125), the Science Research Project of the Ministry of Education of Heilongjiang Province of China (2012TD012, 12511Z030, 12521594), and the Graduate Innovation Fund of Heilongjiang Province of China (YJSCX2011-198HLJ, YJSCX2010-024X).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Jia or Xiangfeng Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Jia, L. & Guo, X. Direct Hydroxylation of Benzene to Phenol Over Mixed-Crystal Particles of Mesoporous VO x /TiO2 Catalyst Mixed-Crystal VO x /TiO2 for Benzene Hydroxylation. Catal Lett 142, 1251–1261 (2012). https://doi.org/10.1007/s10562-012-0887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0887-0

Keywords

Navigation