Skip to main content
Log in

Study of the acid and redox properties of copper oxide supported on ceria–zirconia in isopropyl and t-butyl alcohol conversion

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The CuO/Ce0,62Zr0,38O2 catalysts with different Cu loading were prepared by incipient wetness impregnation. The amount of Cu was 2, 4, 10 wt%. The samples were characterized by X-ray diffraction, scanning electron microscopy (SEM/EDX), N2 adsorption and Raman spectroscopy. The acid and redox properties of these catalysts were evaluated by isopropyl and t-butyl alcohol conversion. The isopropyl alcohol conversion showed that all Cu/CZ catalysts possessed higher activity than pure CuO and unmodified CZ support in dehydrogenation to acetone. The strong interaction of the active phase with the support is responsible for this rise of activity. Conversion of t-butyl alcohol confirmed the presence of acid centres. It was found that the increase in the activity of Cu/CZ catalysts compared with the unmodified CZ support is caused by the CuO active phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomas JH, Thomas WJ (2008) Principles and practice of heterogeneous catalysis, chap. 1. Wiley-VCH, Weinheim

    Google Scholar 

  2. Abello MC, Gomez MF, Ferretti O (2001) Appl Catal A 207:421–431

    Article  CAS  Google Scholar 

  3. Haffad D, Chambellan A, Lavelly JC (2001) J Catal A 168:153–164

    Article  CAS  Google Scholar 

  4. Cutrufello MG, Ferino I, Monaci R, Rombi E, Solinas V (2002) Top Catal 19:225–240

    Article  CAS  Google Scholar 

  5. Busca G, Finocchio E, Ramis G, Ricchiardi G (1996) Catal Today 32:133–143

    Article  CAS  Google Scholar 

  6. Davydov A (2003) Molecular spectroscopy of oxide catalyst surface. Wiley, London

    Book  Google Scholar 

  7. Hadjiivanov KI (2000) Catal Rev Sci Eng 42:71–144

    Article  CAS  Google Scholar 

  8. Turek W, Haber J, Krowiak A (2005) Appl Surf Sci 252:823–827

    Article  CAS  Google Scholar 

  9. Schlunt P, Chau PC (1986) J Catal 102:348–356

    Article  CAS  Google Scholar 

  10. Haag WO, Pines H (1960) J Am Chem Soc 82:387–391

    Article  CAS  Google Scholar 

  11. Roosmalen AJ, Hartmarin MCG, Mol JC (1980) J Catal 66:112–120

    Article  Google Scholar 

  12. Suzuki I (1981) J Catal 68:220–222

    Article  CAS  Google Scholar 

  13. Turek W, Strzezik J, Krowiak A (2012) Reac Kinet Mech Cat 107:115–125

    Article  CAS  Google Scholar 

  14. Turek W, Lapkowski M, Debiec J, Krowiak A (2005) Appl Surf Sci 252:847–852

    Article  CAS  Google Scholar 

  15. Turek W, Krowiak A (2012) Appl Catal A 417:102–110

    Article  Google Scholar 

  16. Ortiz-Islas E, Lopez T, Navarrete J, Bokhimi X, Gómez R (1998) J Sol-Gel Sc Technol 13:1043–1047

    Article  Google Scholar 

  17. Adamowska M, Muller S, Da Costa P, Krzton A, Burg P (2007) Appl Catal B 74:278–289

    Article  CAS  Google Scholar 

  18. Adamowska M, Krzton A, Najbar M, Camra J, Djega-Mariadassou G, Da Costa P (2009) Appl Catal B 90:535–544

    Article  CAS  Google Scholar 

  19. Gómez-García MA, Pitchon V, Kiennemann A (2005) Environ Int 31:445–467

    Article  Google Scholar 

  20. Damyanova S, Pawelec B, Arishtirova K, Martinez Huerta MV, Fierro JLG (2008) Appl Catal A 337:86–96

    Article  CAS  Google Scholar 

  21. Agula B, Deng QF, Jia ML, Liu Y, Zhaorigetu B, Yuan ZY (2011) Reac Kinet Mech Cat 103:101–112

    Article  Google Scholar 

  22. Xu S, Yan X, Wang X (2006) Fuel 85:2243–2247

    Article  CAS  Google Scholar 

  23. Bruix A, Rodriguez JA, Ramírez PJ, Senanayake SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F (2012) J Am Chem Soc 134:8968–8974

    Article  CAS  Google Scholar 

  24. Trovarelli A (1996) Catal Rev Sci Eng 38:439–520

    Article  CAS  Google Scholar 

  25. Radlik M, Adamowska M, Łamacz A, Krztoń A, Da Costa P, Turek W (2013) Reac Kinet Mech Cat 109:43–56

    Article  CAS  Google Scholar 

  26. Lamacz A, Krzton A, Djega-Mariadassou G (2011) Catal Today 176:126–130

    Article  CAS  Google Scholar 

  27. Granger P, Parvulescu VI (2011) Chem Rev 111:3155–3207

    Article  CAS  Google Scholar 

  28. Little LH (1966) Infrared spectra of adsorbed species. Academic Press, London

    Google Scholar 

  29. Trovarelli A, De Leitenburg C, Dolcetti G, Lorca JL (1995) J Catal 151:111–124

    Article  CAS  Google Scholar 

  30. Chorkendorff I, Niemantsverdriet JW (2003) Concepts of modern catalysis and kinetics. Wiley-VCH, Weinheim, p 51

    Book  Google Scholar 

  31. Haber J, Turek W, Wolna A (2003) Ann Pol Chem Soc 3:1229–1231

    Google Scholar 

  32. Dow WP, Wang YP, Huang TJ (2000) Appl Catal A 190:25–34

    Article  CAS  Google Scholar 

  33. Sedmak G, Hocevar S, Levec J (2003) J Catal 213:135–150

    Article  CAS  Google Scholar 

  34. Djinovic P, Levec J, Pintar A (2008) Catal Today 138:222–227

    Article  CAS  Google Scholar 

  35. He Ch, Yu Y, Shen Q, Chen J, Qiao N (2014) Appl Surf Sci 297:59–69

    Article  CAS  Google Scholar 

  36. Lianjun L, Zhijian Y, Bin L, Lin D (2010) J Catal 275:45–60

    Article  Google Scholar 

  37. Letichevsky S, Tellez CA, de Avillez RR, da Silva MIP, Fraga MA, Appel LG (2005) Appl Catal B 58:203–210

    Article  CAS  Google Scholar 

  38. Xu JF, Ji W, Shen ZX, Li WS, Tang SH, Ye XR, Jia DZ, Xin XQ (1999) J Raman Spectrosc 30:413–425

    Article  CAS  Google Scholar 

  39. Hocevar S, Batista J, Levec J (1999) J Catal 184:39–48

    Article  CAS  Google Scholar 

  40. Daturi M, Binet C, Lavalley JC, Galtayries A, Sporken R (1999) Phys Chem Chem Phys 1:5717–5724

    Article  CAS  Google Scholar 

  41. Busca G (1998) Catal Today 41:191–206

    Article  CAS  Google Scholar 

  42. Burbano M, Sian N, Marrocchelli D, Salanne M, Graeme WW (2014) Phys Chem Chem Phys 16:8320–8331

    Article  CAS  Google Scholar 

  43. Liu P, Stacchiola D, Hrbek J, Rodriguez JA (2011) J Am Chem Soc 133:11474–11477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Strzezik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radlik, M., Strzezik, J., Krowiak, A. et al. Study of the acid and redox properties of copper oxide supported on ceria–zirconia in isopropyl and t-butyl alcohol conversion. Reac Kinet Mech Cat 115, 741–758 (2015). https://doi.org/10.1007/s11144-015-0865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0865-9

Keywords

Navigation