Skip to main content
Log in

The effect of palladium and CeO2 on the catalytic and physicochemical properties of copper catalysts in methanol synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This paper deals with the study of the bimetallic Pd–Cu and monometallic Cu, Pd catalyst used in the methanol synthesis reaction. To reveal the influence of the catalyst properties on methanol production, various characterization techniques were used, such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, TPR-H2 and TPD-NH3. The catalytic activity was studied in CO hydrogenation under elevated pressure (4.8 MPa) in a fixed bed high-pressure reactor. The activity results confirmed the promotion effect of palladium and CeO2 on the catalytic activity of copper catalysts. The highest activity and selectivity of Pd–Cu/ZnAl2O4–5 % CeO2 is explained by the Pd–Cu alloy formation during activation process. The presence of adsorption species attributed to b-HCO3–Ce, b-HCOO–Ce and b-HCOO–Ce species on the surface of CeO2 promoted catalysts was confirmed by FTIR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tijm PJA, Waller FJ, Brown DM (2001) Methanol technology developments for the new millennium. Appl Catal A 221:275–282

    Article  CAS  Google Scholar 

  2. Liu X-M, Lu GQ, Yan Z-F, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42:6518–6530

    Article  CAS  Google Scholar 

  3. Waugh KC (1992) Methanol synthesis. Catal Today 15:51–75

    Article  CAS  Google Scholar 

  4. Mierczynski P, Kaczorowski P, Maniecki TP, Bawolak-Olczak K, Maniukiewicz W (2013) The influence of Pd loading on the physicochemical properties of the Cu–Cr–Al methanol synthesis catalysts. Reac Kinet Mech Cat 109:13–27

    Article  CAS  Google Scholar 

  5. Bradford MCJ, Konduru MV, Fuentes DX (2003) Preparation, characterization and application of Cr2O3/ZnO catalysts for methanol synthesis. Fuel Process Technol 83:11–25

    Article  CAS  Google Scholar 

  6. Gunter M, Ressler T, Bems B, Buscher C, Genger T, Hinrichsen O, Muhler M, Schlögl R (2001) Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catal Lett 71:37–44

    Article  CAS  Google Scholar 

  7. Grunwaldt JD, Molenbroek AM, Topsøe NY, Topsøe H, Clausen BS (2000) In situ investigations of structural changes in Cu/ZnO catalysts. J Catal 194:452–460

    Article  CAS  Google Scholar 

  8. Yoshihara J, Campbell CT (1996) Methanol synthesis and reverse water–gas shift kinetics over Cu(110) model catalysts: structural sensitivity. J Catal 161:776–782

    Article  CAS  Google Scholar 

  9. Nakamura J, Choi Y, Fujitani T (2003) On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top Catal 22(3–4):277–285

    Article  CAS  Google Scholar 

  10. Li B, Jens K-J (2014) Low-temperature and low-pressure methanol synthesis in the liquid phase catalyzed by copper alkoxide systems. Ind Eng Chem Res 53(5):1735–1740

    Article  CAS  Google Scholar 

  11. Li C, Sakata Y, Arai T, Domen K, Maruya K-I, Onish T (1989) Adsorption of carbon monoxide and carbon dioxide on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 2.—Formation of formate species on partially reduced CeO2 at room temperature. J Chem Soc Faraday Trans I 85(6):1451–1461

    Article  CAS  Google Scholar 

  12. Si R, Zhang Y-W, Li S-J, Lin B-X, Yan C-H (2004) Urea-based hydrothermally derived homogeneous nanostructured Ce1−x Zr x O2 (x = 0–0.8) solid solutions: a strong correlation between oxygen storage capacity and lattice strain. J Phys Chem B 108(33):12481–12488

    Article  CAS  Google Scholar 

  13. Kapoor MP, Raj A, Matsumura Y (2001) Methanol decomposition over palladium supported mesoporous CeO2–ZrO2 mixed oxides. Microporous Mesoporous Mater 44–45:565–572

    Article  Google Scholar 

  14. Galtayries A, Sporken R, Riga J, Blanchard G, Caudano R (1998) XPS comparative study of ceria/zirconia mixed oxides: powders and thin film characterisation. J Electron Spectrosc Relat Phenom 88–91:951–956

    Article  Google Scholar 

  15. Yoo C-J, Lee D-W, Kim M-S, Moon DJ, Lee K-Y (2013) The synthesis of methanol from CO/CO2/H2 gas over Cu/Ce1−x Zr x O2 catalysts. J Mol Catal A 378:255–262

    Article  CAS  Google Scholar 

  16. Ma Y, Ge Q, Li W, Xu H (2009) Methanol synthesis from sulfur-containing syngas over Pd/CeO2 catalyst. Appl Catal B 90:99–104

    Article  CAS  Google Scholar 

  17. Shen W-J, Ichihashi Y, Andoa H, Okumuraa M, Haruta M, Matsumura Y (2001) Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition–precipitation method. Appl Catal A 217:165–172

    Article  CAS  Google Scholar 

  18. Maniecki TP, Stadnichenko AI, Maniukiewicz W, Bawolak K, Mierczynski P, Boronin AI, Jozwiak WK (2010) An active phase transformation on surface of Ni–Au/Al2O3 catalyst during partial oxidation of methane to synthesis gas. Kinet Catal 51:573–578

    Article  CAS  Google Scholar 

  19. Maniecki TP, Bawolak-Olczak K, Mierczynski P, Maniukiewicz W, Jóźwiak WK (2009) Effect of the chemical composition of (MgO)(x)(Al2O3)(y) support on the catalytic performance of Ni and Ni–Au catalysts for the partial oxidation of methane. Chem Eng J 154(1–3):142–148

    Article  CAS  Google Scholar 

  20. Maniecki TP, Bawolak K, Mierczynski P, Jozwiak WK (2008) Gold as promoter of nickel supported catalysts for semi combustion of methane. Pol J Chem 82:2389–2399

    CAS  Google Scholar 

  21. Maniecki TP, Mierczynski P, Maniukiewicz W, Bawolak K, Gebauer D, Jozwiak WK (2008) Methanol synthesis from mixture of CO, CO2 and H2 under atmospheric pressure over Au, Ag–Cu/FeAlO3 supported catalysts. Pol J Chem 82(2008):2379–2388

    CAS  Google Scholar 

  22. Mierczynski P, Maniecki TP, Chalupka K, Maniukiewicz W, Jozwiak WK (2011) Cu/Zn x Al y O z supported catalysts (ZnO:Al2O3 = 1, 2, 4) for methanol synthesis. Catal Today 176:21–27

    Article  CAS  Google Scholar 

  23. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Maniecki TP (2013) The effect of ZnAl2O4 on the performance of Cu/Zn x Al y O x+1.5y supported catalysts in steam reforming of methanol. Top Catal 56:1015–1025

    Article  CAS  Google Scholar 

  24. Maniecki TP, Mierczynski P, Bawolak-Olczak K, Jozwiak WK (2009) Methanol synthesis from CO2 and H2 mixture over 60 % Cu/support (FeAlO3, ZnAl2O4) catalysts. Pol J Chem 83:1653–1662

    CAS  Google Scholar 

  25. Maniecki TP, Mierczynski P, Jozwiak WK (2010) Copper-supported catalysts in methanol synthesis and water gas shift reaction. Kinet Catal 51:843–848

    Article  CAS  Google Scholar 

  26. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Maniecki TP (2014) Highly selective Pd–Cu/ZnAl2O4 catalyst for hydrogen production. Appl Catal A 479:26–34

    Article  CAS  Google Scholar 

  27. Mierczynski P, Ciesielski R, Kedziora A, Zaborowski M, Maniukiewicz W, Nowosielska M, Szynkowska MI, Maniecki TP (2014) Novel Pd–Cu/ZnAl2O4–ZrO2 catalysts for methanol synthesis. Catal Lett 144:723–735

    Article  CAS  Google Scholar 

  28. Mierczynski P, Kaczorowski P, Ura A, Maniukiewicz W, Zaborowski M, Ciesielski R, Kedziora A, Maniecki TP (2014) Promoted ternary CuO–ZrO2–Al2O3 catalysts for methanol synthesis. Cent Eur J Chem 12(2):206–212

    Article  CAS  Google Scholar 

  29. Mierczynski P, Maniukiewicz W, Maniecki TP (2013) Comparative studies of Pd, Ru, Ni, Cu/ZnAl2O4 catalysts for the water gas shift reaction. Cent Eur J Chem 11(6):912–919

    Article  CAS  Google Scholar 

  30. Cubeiro ML, Fierro JLG (1998) Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts. J Catal 179:150–162

    Article  CAS  Google Scholar 

  31. Nilsson M, Jansson K, Jozsa P, Pettersson LJ (2009) Catalytic properties of Pd supported on ZnO/ZnAl2O4/Al2O3 mixtures in dimethyl ether autothermal reforming. Appl Catal B 86:18–26

    Article  CAS  Google Scholar 

  32. Wang F, Lu G (2010) Hydrogen feed gas purification over bimetallic Cu–Pd catalysts—effects of copper precursors on CO oxidation. Int J Hydrog Energy 35:7253–7260

    Article  CAS  Google Scholar 

  33. Canner WC, Falconer JL (1995) Spillover in heterogeneous catalysis. Chem Rev 95:759–788

    Article  Google Scholar 

  34. Kugai J, Miller JT, Guo N, Song C (2011) Oxygen-enhanced water gas shift on ceria-supported Pd–Cu and Pt–Cu bimetallic catalysts. J Catal 277:46–53

    Article  CAS  Google Scholar 

  35. Fierro G, Lojacono M, Inversi M, Porta P, Lavecchia R, Cioci F (1994) A study of anomalous temperature-programmed reduction profiles of Cu2O, CuO, and CuO–ZnO catalysts. J Catal 178:709–721

    Article  Google Scholar 

  36. Abdus Subhana Md, Ahmed T, Awal R, Makioka R, Nakata H, Pakkanen TT, Suvanto M, Moon Kim B (2014) Synthesis, structure, luminescence and photophysical properties of nano CuO·ZnO·ZnAl2O4 multi metal oxide. J Lumin 146:123–127

    Article  Google Scholar 

  37. Zou L, Xiang X, Wei M, Yang L, Li F, Evans DG (2008) A facile and green synthesis route to mesoporous spinel-type Zn–Al complex oxide. Ind Eng Chem Res 47:1495–1500

    Article  CAS  Google Scholar 

  38. Kugai J, Fox EB, Song C (2013) Role of CeO2 support for Pd–Cu bimetallic catalysts for oxygen-enhanced water gas shift. Appl Catal A 456:204–214

    Article  CAS  Google Scholar 

  39. Meshesha BT, Barrabés N, Llorca J, Dafinov A, Medina F, Fottinger K (2013) PdCu alloy nanoparticles on alumina as selective catalysts for trichloroethylene hydrodechlorination to ethylene. Appl Catal A 453:130–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partially financed from Grant number 0680/B/H03/2011/40 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Mierczynski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mierczynski, P., Maniukiewicz, W., Zaborowski, M. et al. The effect of palladium and CeO2 on the catalytic and physicochemical properties of copper catalysts in methanol synthesis. Reac Kinet Mech Cat 114, 211–228 (2015). https://doi.org/10.1007/s11144-014-0785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0785-0

Keywords

Navigation