Skip to main content
Log in

Synthesis and characterization of polyaniline Zr(IV) molybdophosphate for the adsorption of phenol from aqueous solution

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present investigation, a composite cation exchange material has been synthesized by the sol–gel method and used as an adsorbent for the removal of phenol from aqueous solutions. Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy studies were performed to characterize the polyaniline Zr(IV) molybdophosphate (PZMP) particles. The average size of the PZMP was in the nano-range. Batch adsorption studies were carried out to study the effect of various parameters like effect of pH, initial concentration, contact time and temperature. Increase in the initial phenol concentration with time could effectively increase the phenol adsorption capacity. Adsorption data of phenol agreed well with Langmuir, Freundlich, Temkin and Dubinin–Redushkeuich (D–R) isotherms at different temperatures. The maximum phenol adsorption capacity was obtained as 25.144 mg/g for 50 mg/L initial phenol concentrations. Thermodynamic parameters showed that adsorption of phenol were endothermic, spontaneous and thermodynamically favorable. The kinetic data followed pseudo-second order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Calace N, Nardi E, Petronio BM, Pietroletti M (2002) Environ Poll 118:315–319

    Article  CAS  Google Scholar 

  2. Akbal F, Onar AN (2003) Enviorn Moin Assess 83:202–295

    Google Scholar 

  3. Dutta NN, Patil GS, Brothakur S (1992) Sep Sci Tech 27:1435–1448

    Article  CAS  Google Scholar 

  4. Li D, Wu Y, Feng L, Zhang L (2012) Bioresour Technol 113:121–126

    Article  CAS  Google Scholar 

  5. Thu PTT, Dieu HT, Phi HN, Viet NNT, Sung J, Kim VV (2012) J Porous Mat 19:295–300

    Article  CAS  Google Scholar 

  6. Nadavala SK, Boddu VM, Abburi K (2009) J Hazard Mater 162:482–489

    Article  CAS  Google Scholar 

  7. Wang H, Liu W, Yao W, Zhang KE, Zhong J, Chen R (2013) Appl Surf Sci 268:179–187

    Article  CAS  Google Scholar 

  8. Jin L, He D, Wei M (2011) Chem Eng Tech 34:1559–1566

    Article  CAS  Google Scholar 

  9. Jin X, Li Y, Yu C, Ma Y, Yang L, Hu H (2011) J Hazard Mater 198:247–256

    Article  CAS  Google Scholar 

  10. Lin K, Pan J, Chen Y, Cheng R, Xu X (2009) J Hazard Mater 161:231–240

    Article  CAS  Google Scholar 

  11. Soylak M, Elci L, Dogan M (1996) Trace Elem Electr 13:130–132

    CAS  Google Scholar 

  12. Ruiz-Hitzky E, Aranda P, Serratosa JM (2004) Handbook of Layered Materials. Marcel Dekker, New York

    Google Scholar 

  13. Ruiz-Hitzky E, Aranda P, Casal B, Galvan JC (1995) Adv Mater 7:180–184

    Article  CAS  Google Scholar 

  14. Clearfield A (2000) Solv Extrn Ion Exch 18:655–678

    Article  CAS  Google Scholar 

  15. Bushra R, Shahadat M, Raeisssi AS, Nabi SA (2012) Desalination 289:1–11

    Article  CAS  Google Scholar 

  16. Shahadat M, Nabi SA, Bushra R, Raeisssi AS, Umar K, Ansari MO (2012) RSC Advances 2:7207–7220

    Article  CAS  Google Scholar 

  17. Faridbod F, Ganjali MR, Dinarvand R, Norouzi P (2007) African J Biotechnol 6:2960–2987

    CAS  Google Scholar 

  18. Li XG, Ma XL, Huang MR (2009) Talanta 78:498–505

    Article  CAS  Google Scholar 

  19. Lu QF, Huang MR, Li XG (2007) Chem Eur J 13:6009–6018

    Article  CAS  Google Scholar 

  20. www.merck-chemicals.com

  21. Laszlo K, Szucs A (2001) Carbon 39:1945–1953

    Article  CAS  Google Scholar 

  22. Li Xin-Guili, Hung MR, Liu R (2005) React Funct Polym 2:285–294

    Google Scholar 

  23. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press, New York

    Google Scholar 

  24. Lin CW, Hwang BJ, Lee CR (1999) Mater Chem Phys 58:114–120

    Article  CAS  Google Scholar 

  25. Choudhury A (2009) Sens Actuat B 138:318–325

    Article  CAS  Google Scholar 

  26. Nabi SA, Naushad Mu, Inamuddin (2007) J Hazard Mater 142:404–411

    Article  CAS  Google Scholar 

  27. Chai XL, Zhao YC (2006) J Hazard Mater 137:410–417

    Article  CAS  Google Scholar 

  28. Dabrowski A, Podkoscielny P, Hubicki M, Barczak M (2005) Chemosphere 58:1049–1070

    Article  CAS  Google Scholar 

  29. Langmuir I (1916) J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  30. Kalavathy MH, Miranda LR (2010) Chem Eng J 158:188–199

    Article  Google Scholar 

  31. Dias Flores PE, Lopez Urias F, Terrones M, Rangel-Mandez JR (2009) J Colloid Interface Sci 334:124–131

    Article  Google Scholar 

  32. Freundlich HMF (1906) J Phys Chem 57:385–471

    CAS  Google Scholar 

  33. Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley-Interscience, New York

    Google Scholar 

  34. Tabak A, Eren E, Afsin B, Caglar B (2009) J Hazard Mater 161:1087–1094

    Article  CAS  Google Scholar 

  35. Temkin MI, Pyzhev V (1940) Acta Phys-Chim Sin 12:327–356

    CAS  Google Scholar 

  36. Aharoni C, Ungarish M (1977) J Chem Soc, Faraday Trans 73:456–464

    Article  CAS  Google Scholar 

  37. Dubinin MM, Radushkevich LV (1947) Phys Chem Sec C 55:331–337

    Google Scholar 

  38. Gonzalez JR, Videa JRP, Rodriguez E, Delgado M, Gardea-Torresdey JL (2006) Biores Techn 97:178–182

    Article  Google Scholar 

  39. Helfferich F (1962) Ion exchange. McGraw-Hill, New York 166

    Google Scholar 

  40. Liu Y (2009) J Chem Engg Data 54:1981–1985

    Article  CAS  Google Scholar 

  41. IUPAC (1947) Compendium of chemical terminology, 2nd edn. Blackwell Science, Oxford, U.K

    Google Scholar 

  42. Lagergren S (1898) About the theory of so called adsorption of soluble substances. Kung Sven Vetensk Adam Handl 24:1–39

    Google Scholar 

  43. Ho YS, McKay G (2000) Water Res 29:297–305

    Google Scholar 

  44. Ho YS, McKay G (1998) Process Saf Environ 6:332–340

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the UGC for providing financial support and one of the author thanks to Dean, College of Engineering, Majmaah University for motivation and support. The Research Facilities provided by Department of Chemistry A.M.U Aligarh is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anees Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Uddin, M.K., Bushra, R. et al. Synthesis and characterization of polyaniline Zr(IV) molybdophosphate for the adsorption of phenol from aqueous solution. Reac Kinet Mech Cat 113, 499–517 (2014). https://doi.org/10.1007/s11144-014-0751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0751-x

Keywords

Navigation