Skip to main content
Log in

Eco-friendly and efficient synthesis of benzimidazole derivatives using iron oxide modified sepiolite catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A fast, economic, and green synthesis of benzimidazole derivatives using iron oxide modified sepiolite (IMS) as a catalyst has been reported. IMS showed excellent catalytic properties and the reactions completed within 20–30 min to give products in high yield. The adsorption mechanism of formic acid on IMS was studied by infrared (IR) spectroscopy at temperature range 120–400 °C. Thermal desorption of pyridine was followed by IR and thermal analysis techniques to estimate the acidity of IMS. Lewis acid-bound pyridine bands at 1,618–1,631 and 1,443–1,445 cm−1 were observed even after IMS sample were heated above 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Tsodikov MV, Kugel VYa, Slivinskii EV, Bondarenko GN, Maksimov YuV, Alvarez MA, Hidalgo MC, Navio JA (2000) Appl Catal A 193:237–242

    Article  CAS  Google Scholar 

  2. Benz M, van der Kraan AM, Prins R (1998) Appl Catal A 172:149–157

    Article  CAS  Google Scholar 

  3. Gervasini A, Messi C, Flahaut D, Guimon C (2009) Appl Catal A 367:113–121

    Article  CAS  Google Scholar 

  4. Klissurski D, Mitov I, Ivanov K, Tyuliev G, Dimitrov D, Chakarova K, Uzunov I (2010) Reac Kinet Mech Cat 100:123–129

    CAS  Google Scholar 

  5. Hamidi F, Petitto C, Signorile C, Delahay G, Bengueddach A (2011) Reac Kinet Mech Cat 104:429–436

    Article  CAS  Google Scholar 

  6. Mora M, Carmona MA, Jimenez-Sanchidrian C, Lopez MI, Ruiz JR (2010) Reac Kinet Mech Cat 99:303–309

    CAS  Google Scholar 

  7. Bautista FM, Campelo JM, Luna D, Luque J, Marinas JM (2006) Catal Today 112:28–32

    Article  CAS  Google Scholar 

  8. Suárez S, Saiz C, Yates M, Martin JA, Avila P, Blanco J (2005) Appl Catal B 55:57–64

    Article  Google Scholar 

  9. Rasmussen SB, Due-Hansen J, Villarroel M, Gil-Llambias FJ, Fehrmann R, Ávila P (2011) Catal Today 172:73–77

    Article  CAS  Google Scholar 

  10. Göker H, Kuş C, Boykin DW, Yildiz S, Altanlar N (2002) Bioorgan Med Chem 10:2589–2596

    Article  Google Scholar 

  11. Devereux M, McCann M, Shea DO, Kelly R, Egan D, Deegan C, Kavanagh K, McKee V, Finn G, Inorgan J (2004) Biochemistry 98:1023–1031

    CAS  Google Scholar 

  12. Mavrova ATs, Vuchev D, Anichina K, Vassilev N (2010) Eur J Med Chem 45:5856–5861

    Article  CAS  Google Scholar 

  13. Wright J, Downing D, Heffner T, Pugsley T, MacKenzie R, Wise L (1995) Bioorg Med Chem Lett 5:2541–2546

    Article  CAS  Google Scholar 

  14. Guo X-Z, Shi L, Wang R, Liu X-X, Li B-G, Lu X-X (2008) Bioorg Med Chem Lett 16:10301–10310

    Article  CAS  Google Scholar 

  15. Kim JM, Lee KY, Kim JN (2002) Bull Korean Chem Soc 23:1055–1056

    Article  CAS  Google Scholar 

  16. Alinezhad H, Salehian F, Biparva P (2012) Synthetic Commun 42:102–108

    Article  CAS  Google Scholar 

  17. Shingalapur RV, Hosamani KM (2010) Catal Lett 137:63–68

    Article  CAS  Google Scholar 

  18. Taha MAM (2005) J Chin Chem Soc 52:137–140

    CAS  Google Scholar 

  19. Jacobs G, Patterson PM, Graham UM, Crawford AC, Davis BH (2005) Int J Hydrog Energy 30:1265–1276

    Article  CAS  Google Scholar 

  20. Ivanov EA, Popova GYa, Chesalov YuA, Andrushkevich TV (2009) J Mol Catal A 312:92–96

    Article  CAS  Google Scholar 

  21. Jacobs G, Patterson PM, Graham UM, Crawford AC, Dozier A, Davis BH (2005) J Catal 235:79–91

    Article  CAS  Google Scholar 

  22. Flaherty DW, Berglund SP, Mullins CB (2010) J Catal 269:33–43

    Article  CAS  Google Scholar 

  23. Cabilla GC, Bonivardi AL, Baltanás MA (2003) Appl Catal A 255:181–195

    Article  CAS  Google Scholar 

  24. Miller KL, Falconer JL, Medlin JW (2011) J Catal 278:321–328

    Article  CAS  Google Scholar 

  25. Peyrovi MH, Hamoule T (2012) Reac Kinet Mech Cat 106:233–243

    Article  CAS  Google Scholar 

  26. Kourieh R, Bennici S, Auroux A (2012) Reac Kinet Mech Cat 105:101–111

    Article  CAS  Google Scholar 

  27. Shimizu K, Higuchi T, Takasugi E, Hatamachi T, Kodama T, Satsuma A (2008) J Mol Catal A 284:89–96

    Article  CAS  Google Scholar 

  28. Schwidder M, Kumar MS, Bentrup U, Pérez-Ramírez J, Brückner A, Grünert W (2008) Micropor Mesopor Mater 111:124–133

    Article  CAS  Google Scholar 

  29. Kulbicki G (1959) Am Miner 44:752–764

    CAS  Google Scholar 

  30. Belver C, Bañares-Muñoz MA, Vicente MA (2004) Appl Catal B 50:101–112

    Article  CAS  Google Scholar 

  31. Campelo JM, Leon RM, Luna D, Marinas JM, Romero AA (2002) Stud Surf Sci Catal 142:1299–1306

    Article  Google Scholar 

  32. Thomas B, Sugunan S (2006) Micropor Mesopor Mater 96:55–64

    Article  CAS  Google Scholar 

  33. Rajasekhar KK, Shankar Ananth V, Nithiyananthan TS, Hareesh G, Naveen Kumar P, Siva Prasada Reddy R (2010) Int J Chem Tech Res 2:592–597

    CAS  Google Scholar 

  34. Thakuria H, Das G (2008) Arkivoc xv:321–328

  35. Khaksar S, Heydari A, Tajbakhsh M, Vahdat SM (2010) J Fluorine Chem 131:1377–1381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Eren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eren, B., Erdogan, G. Eco-friendly and efficient synthesis of benzimidazole derivatives using iron oxide modified sepiolite catalyst. Reac Kinet Mech Cat 107, 333–344 (2012). https://doi.org/10.1007/s11144-012-0469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0469-6

Keywords

Navigation