Skip to main content
Log in

Zeros of a family of approximations of Hecke L-functions associated with cusp forms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We consider a family of approximations of a Hecke L-function \(L_f(s)\) attached to a holomorphic cusp form f of positive integral weight k with respect to the full modular group. These families are of the form

$$\begin{aligned} L_f(X;s):=\sum _{n\le X}\frac{a(n)}{n^s}+(-1)^{k/2}(2\pi )^{-(1-2s)}\frac{\Gamma \left( \tfrac{k+1}{2}-s\right) }{\Gamma \left( \tfrac{k-1}{2}+s\right) }\sum _{n\le X}\frac{a(n)}{n^{1-s}}, \end{aligned}$$

where \(s=\sigma +it\) is a complex variable and a(n) is a normalized Fourier coefficient of f. From an approximate functional equation, one sees that \(L_f(X;s)\) is a good approximation to \(L_f(s)\) when \(X=t/2\pi \). We obtain vertical strips where most of the zeros of \( L_f(X;s) \) lie. We study the distribution of zeros of \(L_f(X;s)\) when X is independent of t. For \(X=1\) and 2, we prove that all the complex zeros of \(L_f(X;s)\) lie on the critical line \(\sigma =1/2\). We also show that as \(T\rightarrow \infty \) and \( X=T^{o(1)} \), \(100\,\%\) of the complex zeros of \( L_f(X;s) \) up to height T lie on the critical line. Here by \(100\,\%\) we mean that the ratio between the number of simple zeros on the critical line and the total number of zeros up to height T approaches 1 as \(T\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976)

    MATH  Google Scholar 

  2. Apostol, T.M., Sklar, A.: The approximate functional equation of Hecke’s Dirichlet series. Trans. Am. Math. Soc. 86, 446–462 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Berndt, B.C.: On the zeros of a class of Dirichlet series. I. Ill. J. Math. 14, 244–258 (1970)

    MathSciNet  MATH  Google Scholar 

  4. Berndt, B.C., Knopp, M.I.: Hecke’s Theory of Modular Forms and Dirichlet Series. Monographs in Number Theory, vol. 5. World Scientific, Hackensack (2008)

    MATH  Google Scholar 

  5. Chandrasekharan, K., Narasimhan, R.: The approximate functional equation for a class of zeta-functions. Math. Ann. 152, 30–64 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deligne, P.: Formes modulaires et représentations \(l\)-adiques. In: Séminaire Bourbaki. Monographs in Number Theory, vol. 1968/69: Exposés 347–363. Lecture Notes in Mathematics, 175. pp. Exp. No. 355, 139–172. Springer, Berlin (1971)

  7. Deligne, P.: La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43, 273–307 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dixon, R.D., Schoenfeld, L.: The size of the Riemann zeta-function at places symmetric with respect to the point \({1\over 2}\). Duke Math. J. 33, 291–292 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonek, S.M., Ledoan, A.H.: Zeros of partial sums of the Riemann zeta-function. Int. Math. Res. Not. IMRN 10, 1775–1791 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Gonek, S.M., Montgomery, H.L.: Zeros of a family of approximations of the Riemann zeta-function. Int. Math. Res. Not. IMRN 20, 4712–4733 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Good, A.: Approximate Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind. Comment. Math. Helv. 50(3), 327–361 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Knopp, M., Kohnen, W., Pribitkin, W.: On the signs of Fourier coefficients of cusp forms. Ramanujan J. 7(1—-3), 269–277 (2003). Rankin memorial issues

    Article  MathSciNet  MATH  Google Scholar 

  13. Langer, R.E.: On the zeros of exponential sums and integrals. Bull. Am. Math. Soc. 37(4), 213–239 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ledoan, A., Roy, A., Zaharescu, A.: Zeros of partial sums of the Dedekind zeta function of a cyclotomic field. J. Number Theory 136, 118–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lekkerkerker, C.G.: On the Zeros of a Class of Dirichlet Series. Van Gorcum & Comp. N.V, Assen (1955)

    MATH  Google Scholar 

  16. Pólya, G., Szegő, G.: Problems and theorems in analysis. II. Classics in Mathematics. Springer, Berlin (1998). Theory of functions, zeros, polynomials, determinants, number theory, geometry. Translated from the German by C.E. Billigheimer, Reprint of the 1976 English translation

  17. Spira, R.: An inequality for the Riemann zeta function. Duke Math. J. 32, 247–250 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spira, R.: Approximate functional approximations and the Riemann hypothesis. Proc. Am. Math. Soc. 17, 314–317 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Spira, R.: Zeros of approximate functional approximations. Math. Comput. 21, 41–48 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  20. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function. The Clarendon, 2nd edn. Oxford University Press, New York (1986). Edited and with a preface by D.R. Heath-Brown

  21. Trudgian, T.S.: A short extension of two of Spira’s results. J. Math. Inequal. 9(3), 795–798 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wigert, S.: Sur l’order de grandeur du nombre des diviseurs d’un entier. Ark. Mat. Astron. Fys., 3, 1–9 (1906–1907)

  23. Wilder, C.E.: Expansion problems of ordinary linear differential equations with auxiliary conditions at more than two points. Trans. Am. Math. Soc. 18(4), 415–442 (1917)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee for many useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Roy.

Additional information

In memory of Professor Marvin Isadore Knopp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Roy, A. & Zaharescu, A. Zeros of a family of approximations of Hecke L-functions associated with cusp forms. Ramanujan J 41, 391–419 (2016). https://doi.org/10.1007/s11139-016-9791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9791-3

Keywords

Mathematics Subject Classification

Navigation