Skip to main content
Log in

The \(M_{2}\)-rank of partitions without repeated odd parts modulo \(6\) and \(10\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Lovejoy and Osburn (J Theor Nombres Bordeaux 21:313–334, 2009) proved formulas for the generating functions for \(M_{2}\)-rank differences modulo \(3\) and \(5\) for partitions without repeated odd parts. In this paper, we derive formulas for the generating functions for \(M_{2}\)-ranks modulo \(6\) and \(10\) for such partitions. With these generating functions, we find some inequalities between \(M_{2}\)-ranks modulo \(3,5,6\), and \(10\) of partitions without repeated odd parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: The Theory of Partitions, the Encyclopedia of Mathematics and Its Applications Series, p. 300. Addison-Wesley, New York (1976)

    Google Scholar 

  2. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook Part I. Springer, New York (2005)

    Google Scholar 

  3. Andrews, G.E., Lewis, R.: The ranks and cranks of partitions moduli 2, 3, and 4. J. Number Theory 85(1), 74–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Atkin, A.O.L., Swinnerton-Dyer, H.P.F.: Some properties of partitions. Proc. Lond. Math. Soc. 4, 84–106 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berkovich, A., Garvan, F.G.: Some observations on Dyson’s new symmetries of partitions. J. Combin. Theory Ser. A 100, 61–93 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berndt, B.C.: Ramanujan’s Notebooks. Part III. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Chan, S.H.: Generalized Lambert series identities. Proc. Lond. Math. Soc. 91(3), 598–622 (2005)

    Article  MATH  Google Scholar 

  8. Chan, S.H.: Congruences for Ramanujan’s \(\phi \) function. Acta Arith. 153(2), 161–189 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chu, W.: Theta function identities and Ramanujan’s congruences on the partition function. Q. J. Math. 56(4), 491–506 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dyson, F.J.: Some guess in the theory of partitions. Eureka (Cambridge) 8, 10–15 (1944)

    MathSciNet  Google Scholar 

  11. Garvan, F.G.: New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11. Trans. Am. Math. Soc. 305(1), 47–77 (1988)

    MATH  MathSciNet  Google Scholar 

  12. Gordon, B., McIntosh, R.: Some eighth order mock theta functions. J. Lond. Math. Soc. 62, 321–335 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hirschhorn, M.D., Garvan, F., Borwein, J.: Cubic analogues of the Jacobian theta function \(\theta (z, q)\). Can. J. Math. 45(4), 673–694 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bringmann, K., Kane, B.: Inequalities for differences of Dyson’s rank for all odd moduli. Math. Res. Lett. 17(5), 927–942 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lovejoy, J., Osburn, R.: \(M_{2}\)-rank differences for partitions without repeated odd parts. J. Theor. Nombres Bordeaux 21(2), 313–334 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mao, R.: Rank of partitions mod 10, submitted

  17. McIntosh, R.J.: Second order mock theta functions. Can. Math. Bull. 50(2), 284–290 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renrong Mao.

Appendix: Proofs of Lemmas 3.2, 4.2 and 4.3

Appendix: Proofs of Lemmas 3.2, 4.2 and 4.3

First, we derive some theta identities. Let

$$\begin{aligned} H(a,b,c,q):=\frac{\left( ab,q/(ab),bc,q/(bc),ca,q/(ca);q\right) _\infty (q;q)^2_\infty }{\left( a,q/a,b,q/b,c,q/c,abc,q/(abc);q\right) _\infty }. \end{aligned}$$

Then, we have the following equivalent version of Corollary 4.4 in [8]:

Lemma 6.1

$$\begin{aligned}&H(a,b,c,q)-H(a,b,d,q)=H(c,1/d,abd,q),\end{aligned}$$
(6.1)
$$\begin{aligned}&H(a,a,q/a,q^2)+H(b,b,q/b,q^2)=2H(a,q/a,b,q^2),\end{aligned}$$
(6.2)
$$\begin{aligned}&H(a,a,q/a,q^2)-H(b,b,q/b,q^2)=2H(a,q/a,b/q,q^2). \end{aligned}$$
(6.3)

We derive the following special cases. Replacing \(q\) by \(q^{50}\) and setting \((a,b,c,d)=(q^{10},q^{25},q^{10},-q^{-5})\) in (6.1), we get

$$\begin{aligned} \frac{J_{15,50}^2J_{20,50}}{J_{5,50}J_{10,50}^2J_{25,50}}- \frac{q^5J_{15,50}}{J_{10,50}J_{25,50}} =\frac{\overline{J}_{10,50}\overline{J}_{15,50}J_{15,50}}{J_{5,50}\overline{J}_{5,50}J_{10,50}\overline{J}_{20,50}}. \end{aligned}$$

Multiplying by \(\frac{J_{5,50}J_{10,50}^2J_{25,50}}{J_{15,50}}\) throughout, the above equation becomes

$$\begin{aligned} J_{15,50}J_{20,50}- q^5J_{5,50}J_{10,50} =\frac{J_{5,50}J_{20,50}^2J_{25,50}}{J_{10,50}J_{15,50}}. \end{aligned}$$
(6.4)

Replacing \(q\) by \(q^{50}\) and setting \((a,b)=(q^{5},q^{15})\) in (6.3), we find

$$\begin{aligned} \frac{J_{10,100}}{J_{5,100}^2J_{45,100}^2}-\frac{J_{30,100}}{J_{15,100}^2J_{35,100}^2} =\frac{2q^5J_{10,100}J_{30,100}}{J_{5,100}J_{15,100}J_{35,100}J_{45,100}J_{50,100}}. \end{aligned}$$
(6.5)

Replacing \(q\) by \(q^{50}\) and setting \((a,b)=(q^{10},q^{20})\) in (6.3), we find that

$$\begin{aligned} \frac{J_{20,100}}{J_{10,100}^2J_{40,100}^2}-\frac{J_{40,100}}{J_{20,100}^2J_{30,100}^2} =\frac{2q^{10}}{J_{30,100}J_{40,100}J_{50,100}}. \end{aligned}$$
(6.6)

Next, we recall [9, Theorem 1.1]:

Lemma 6.2

For five complex parameters \(A,b,c,d,e\) satisfying \(A^2=bced,\) there holds the theta function identity

$$\begin{aligned}{}[A/b, A/c, A/d, A/e; q]_\infty - [b,c,d,e;q]_\infty = b[A, A/bc, A/bd, A/be; q]_\infty .\nonumber \\ \end{aligned}$$
(6.7)

We need the following special cases. Replacing \(q\) by \(q^{50}\) and setting \((A, b, c, d, e)=(-q^{25}, q^5, q^{10}, q^{15}, q^{20})\) in (6.7), we have

$$\begin{aligned} \overline{J}_{5,50}\overline{J}_{10,50}\overline{J}_{15,50}\overline{J}_{20,50}- J_{5,50}J_{10,50}J_{15,50}J_{20,50}= q^5\overline{J}_{0,50}\overline{J}_{5,50}\overline{J}_{10,50}\overline{J}_{25,50}.\nonumber \\ \end{aligned}$$
(6.8)

Now, we are ready to Lemma 3.2, 4.2, and 4.3, respectively.

Proof of Lemma 3.2

By (2.1), we know that

$$\begin{aligned} \frac{(q^2;q^2)_\infty }{(-q;q^2)_\infty }=\frac{J_{3,36}J_{15,36}J_{18,36}}{J_{6,36}J_{9,36}}-qJ_{9,36}. \end{aligned}$$

Expanding the right side and comparing both sides according to the powers of \(q\) modulo \(3\), we find that it suffices to prove the following three identities:

$$\begin{aligned} \frac{J_{3,36}^2J_{6,36}^3J_{12,36}^2J_{15,36}^2J_{18,36}^2}{2J_{36}^9}&= \frac{J_{18,36}^3J_{36}^3}{J_{9,36}^4}- \frac{J_{6,36}J_{18,36}^2J_{36}^3}{2J_{3,36}^2J_{15,36}^2},\end{aligned}$$
(6.9)
$$\begin{aligned} 0&= q\frac{J_{6,36}J_{18,36}^2J_{36}^3}{J_{3,36}J_{9,36}^2J_{15,36}}- q\frac{J_{6,36}J_{18,36}^2J_{36}^3}{J_{3,36}J_{9,36}^2J_{15,36}},\qquad \qquad \end{aligned}$$
(6.10)
$$\begin{aligned} \frac{J_{3,36}J_{6,36}^3J_{9,36}^2J_{12,36}^2J_{15,36}J_{18,36}^2}{2qJ_{36}^9}&= \frac{J_{18,36}^3J_{36}^3}{2qJ_{3,36}J_{9,36}^2J_{15,36}}- q^2\frac{J_{6,36}^2J_{18,36}J_{36}^3}{J_{3,36}^2J_{15,36}^2}. \end{aligned}$$
(6.11)

Simplifying, each of these three identities, we see that to prove (6.9), it suffices to show that

$$\begin{aligned} 2\frac{J_{18,36}}{J_{9,36}^4}-\frac{J_{6,36}}{J_{3,36}^2J_{15,36}^2}= \frac{J_{3,36}^2J_{6,36}^3J_{12,36}^2J_{15,36}^2}{J_{36}^{12}}. \end{aligned}$$
(6.12)

Noting that

$$\begin{aligned} \frac{J_{18,36}J_{36}^3}{J_{9,36}^4}&= \frac{\overline{J}_{9,18}}{J_{9,18}},\\ \frac{J_{6,36}J_{36}^3}{J_{3,36}^2J_{15,36}^2}&= \frac{\overline{J}_{3,18}}{J_{3,18}} \end{aligned}$$

and

$$\begin{aligned} \frac{J_{3,36}^2J_{6,36}^3J_{12,36}^2J_{15,36}^2}{J_{36}^{9}}= \frac{J_{3,18}J_{6,18}^2}{\overline{J}_{3,18}\overline{J}_{6,18}^2}, \end{aligned}$$

we find that (6.12) is equivalent to

$$\begin{aligned} \frac{2\overline{J}_{9,18}}{J_{9,18}}-\frac{\overline{J}_{3,18}}{J_{3,18}} =\frac{J_{3,18}J_{6,18}^2}{\overline{J}_{3,18}\overline{J}_{6,18}^2}. \end{aligned}$$

Multiplying by \(\frac{J_{9,18}^2}{\overline{J}_{3,18}J_{3,18}J_{6,18}}\) throughout and rearranging, the above equation becomes

$$\begin{aligned} \frac{J_{9,18}^2J_{6,18}}{J_{3,18}^2J_{6,18}^2} +\frac{J_{9,18}^2J_{6,18}}{\overline{J}_{3,18}^2\overline{J}_{6,18}^2} =\frac{2J_{9,18}\overline{J}_{6,18}\overline{J} _{9,18}}{J_{3,18}J_{6,18}\overline{J}_{3,18}\overline{J}_{6,18}}. \end{aligned}$$

This follows from replacing \(q,a\), and \(b\) by \(q^9,q^3\), and \(-q^3\), respectively, in (6.2).

Equation (6.10) is trivial.

To prove (6.11), it suffices to show that

$$\begin{aligned} \frac{J_{18,36}^2}{J_{9,36}^2}-\frac{2q^3J_{6,36}^2}{J_{3,36}J_{15,36}}= \frac{J_{3,36}^2J_{6,36}^3J_{9,36}^2J_{12,36}^2J_{15,36}^2J_{18,36}}{J_{36}^{12}}, \end{aligned}$$

which is equivalent to

$$\begin{aligned} \frac{J_{6,12}^2}{J_{3,12}^2}-2q\frac{J_{2,12}^2}{J_{1,12}J_{5,12}}&=\frac{J_1^2 J_{2,12}}{J_{12}^3}. \end{aligned}$$
(6.13)

Equation (6.13) follows from two identities:

$$\begin{aligned} \frac{J_{6,12}^2}{J_{3,12}^2}+q\frac{J_{2,12}^2}{J_{1,12}J_{5,12}}&= \frac{J_{4,12}^2}{J_{1,12}J_{5,12}},\end{aligned}$$
(6.14)
$$\begin{aligned} \frac{J_{4,12}^2}{J_{1,12}J_{5,12}}-3q\frac{J_{2,12}^2}{J_{1,12}J_{5,12}}&= \frac{J_1^2 J_{2,12}}{J_{12}^3}. \end{aligned}$$
(6.15)

Equation (6.14) follows from replacing \(q\) by \(q^{12}\) and setting \((A, b, c, d, e)=(q^9, q, q^5, q^6, q^6)\) in (6.7).

Next, we prove (6.15). Multiplying throughout by \(\frac{J_{1,12}J_{4,12}J_{5,12}}{J_{12}}\), Eq. (6.15) becomes

$$\begin{aligned} \frac{J_{4,12}^3}{J_{12}}-3q\frac{J_{2,12}^2J_{4,12}}{J_{12}} =\frac{J_1^2 J_{1,12}J_{2,12}J_{4,12}J_{5,12}}{J_{12}^4}, \end{aligned}$$

which upon simplifying and rearranging gives,

$$\begin{aligned} \frac{J_1^3}{J_{3}}=\frac{J_{4}^3}{J_{12}} - 3q \frac{J_{12}^3J_2^2}{J_4 J_{6}^2}. \end{aligned}$$

Setting \(b(q) = \frac{J_1^3}{J_3}\), we see that it suffices to show that

$$\begin{aligned} b(q) = b(q^4)-3q \frac{J_{12}^3J_2^2}{J_4 J_{6}^2}, \end{aligned}$$

which is proved in [13, Eq. (1.35)]. This completes the proof of Lemma 3.2. \(\square \)

Sketch of the proof of Lemma 4.2

By (2.2), we know that

$$\begin{aligned} \frac{(q^2;q^2)_\infty }{(-q;q^2)_{\infty }}\!=\!\frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}} -q\frac{J_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}} -q^3J_{25,100}. \end{aligned}$$

Expanding the right side of (4.5) and comparing both sides according to the powers of \(q\) modulo \(5\), we find that it suffices to prove the following five identities:

$$\begin{aligned}&\frac{J_{5,100}^2J_{10,100}J_{20,100}J_{30,100}^2J_{40,100}J_{45,100}^2J_{50,100}^2}{2J_{100}^9}\nonumber \\&- \frac{J_{10,100}^2J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{50,100}^2}{2J_{100}^9}\nonumber \\&= \frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}}\times \frac{2q^5J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^2J_{25,100}^3J_{30,100}J_{35,100}^2J_{45,100}^3}\nonumber \\&-\frac{qJ_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}}\times \frac{2q^4J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}J_{15,100}^3J_{25,100}^3J_{35,100}^3J_{40,100}^2J_{45,100}^2}\nonumber \\&-q^3J_{25,100}\times \frac{q^2J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^3J_{20,100}J_{25,100}J_{35,100}^3J_{40,100}J_{45,100}^3},\end{aligned}$$
(6.16)
$$\begin{aligned}&\frac{qJ_{5,100}J_{10,100}^2J_{15,100}J_{30,100}^2J_{35,100}J_{40,100}^2J_{45,100}J_{50,100}}{J_{100}^9}\nonumber \\&= \frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}}\times \frac{qJ_{20,100}J_{30,100}^2J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}^2J_{15,100}^4J_{25,100}J_{35,100}^4J_{40,100}^3J_{45,100}^2}\nonumber \\&-q\frac{J_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}}\times \frac{2q^5J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^2J_{25,100}^3J_{30,100}J_{35,100}^2J_{45,100}^3}\nonumber \\&-q^3J_{25,100}\times \frac{q^3J_{10,100}^2J_{40,100}J_{50,100}J_{100}^{15}}{J_{5,100}^4J_{15,100}^2J_{20,100}^3J_{25,100}J_{30,100}^2J_{35,100}^2J_{45,100}^4},\end{aligned}$$
(6.17)
$$\begin{aligned} 0&= \frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}}\times \frac{q^2J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^3J_{20,100}J_{25,100}J_{35,100}^3J_{40,100}J_{45,100}^3}\nonumber \\&-\frac{qJ_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}}\times \frac{qJ_{20,100}J_{30,100}^2J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}^2J_{15,100}^4J_{25,100}J_{35,100}^4J_{40,100}^3J_{45,100}^2}\nonumber \\&-q^3J_{25,100}\times \frac{2q^4J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}J_{15,100}^3J_{25,100}^3J_{35,100}^3J_{40,100}^2J_{45,100}^2}, \end{aligned}$$
(6.18)
$$\begin{aligned} 0&= \frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}}\times \frac{q^3J_{10,100}^2J_{40,100}J_{50,100}J_{100}^{15}}{J_{5,100}^4J_{15,100}^2J_{20,100}^3J_{25,100}J_{30,100}^2J_{35,100}^2J_{45,100}^4}\nonumber \\&-\frac{qJ_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}}\times \frac{q^2J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^3J_{20,100}J_{25,100}J_{35,100}^3J_{40,100}J_{45,100}^3}\nonumber \\&-q^3J_{25,100}\times \frac{2q^5J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^2J_{25,100}^3J_{30,100}J_{35,100}^2J_{45,100}^3},\end{aligned}$$
(6.19)
$$\begin{aligned}&-\frac{q^9J_{5,100}J_{10,100}^2J_{15,100}J_{20,100}^2J_{30,100}^2J_{35,100}J_{45,100}J_{50,100}}{J_{100}^9}\nonumber \\&= \frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}}\times \frac{2q^4J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}J_{15,100}^3J_{25,100}^3J_{35,100}^3J_{40,100}^2J_{45,100}^2}\nonumber \\&-\frac{qJ_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}}\times \frac{q^3J_{10,100}^2J_{40,100}J_{50,100}J_{100}^{15}}{J_{5,100}^4J_{15,100}^2J_{20,100}^3J_{25,100}J_{30,100}^2J_{35,100}^2J_{45,100}^4}\nonumber \\&-q^3J_{25,100}\times \frac{qJ_{20,100}J_{30,100}^2J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}^2J_{15,100}^4J_{25,100}J_{35,100}^4J_{40,100}^3J_{45,100}^2}. \end{aligned}$$
(6.20)

The proof of the above five identities are quite similar to each other. We give the details of the proof of the first identity and omit the rest. After simplifying, we see that to prove (6.16), it suffices to show that

$$\begin{aligned}&\frac{J_{10,100}J_{20,100}J_{30,100}J_{40,100}J_{50,100}}{2J_{100}^{24}}\left\{ J_{5,100}^2J_{30,100}J_{45,100}^2-J_{10,100}J_{15,100}^2J_{35,100}^2\right\} \nonumber \\&\quad =\frac{2q^5J_{50,100}}{J_{5,100}J_{15,100}J_{20,100}J_{25,100}^4J_{35,100}J_{40,100}J_{45,100}}\nonumber \\&\qquad \times \left\{ \frac{1}{J_{5,100}^2J_{30,100}J_{45,100}^2}-\frac{1}{J_{10,100}J_{15,100}^2J_{35,100}^2}\right\} \nonumber \\&\qquad -\frac{q^5}{J_{5,100}^3J_{15,100}^3J_{20,100}J_{35,100}^3J_{40,100}J_{45,100}^3}. \end{aligned}$$
(6.21)

Multiplying by \(J_{5,100}^2J_{15,100}^2J_{35,100}^2J_{45,100}^2\) throughout, (6.5) becomes

$$\begin{aligned} J_{5,100}^2J_{30,100}J_{45,100}^2&- J_{10,100}J_{15,100}^2J_{35,100}^2\nonumber \\&= -\frac{2q^5J_{5,100}J_{10,100}J_{15,100}J_{30,100}J_{35,100}J_{45,100}}{J_{50,100}}.\qquad \end{aligned}$$
(6.22)

Next, we divide by \(J_{10,100}J_{30,100}\) on both sides of (6.5) and get

$$\begin{aligned} \frac{1}{J_{5,100}^2J_{30,100}J_{45,100}^2}-\frac{1}{J_{10,100}J_{15,100}^2J_{35,100}^2}= \frac{2q^5}{J_{5,100}J_{15,100}J_{35,100}J_{45,100}J_{50,100}}.\nonumber \\ \end{aligned}$$
(6.23)

Substituting (6.22) and (6.23) into (6.21), we find that (6.21) is equivalent to

$$\begin{aligned}&-q^5\frac{J_{5,100}J_{10,100}^2J_{15,100}J_{20,100}J_{30,100}^2J_{35,100}J_{40,100}J_{45,100}}{J_{100}^{24}}\nonumber \\&\quad =\frac{q^5}{J_{5,100}^2J_{15,100}^2J_{20,100}J_{35,100}^2J_{40,100}J_{45,100}^2}\nonumber \\&\qquad \times \left\{ \frac{4q^5}{J_{25,100}^4}-\frac{1}{J_{5,100}J_{15,100}J_{35,100}J_{45,100}}\right\} . \end{aligned}$$
(6.24)

Multiplying by \(\frac{1}{q^5}J_{5,100}J_{15,100}J_{20,100} J_{35,100}J_{40,100}J_{45,100}J_{100}^{8}\) throughout and noting that,

$$\begin{aligned} -\frac{J_{5,100}^2J_{10,100}^2J_{15,100}^2J_{20,100}^2J_{30,100}^2J_{35,100}^2 J_{40,100}^2J_{45,100}^2}{J_{100}^{16}}&= -\frac{J_{5,25}^2J_{10,25}^2}{J_{25}^4},\\ \frac{4q^5J_{100}^8}{J_{5,100}J_{15,100}J_{25,100}^4J_{35,100}J_{45,100}}&= \frac{q^5\overline{J}_{0,25}^2\overline{J}_{5,25} \overline{J}_{10,25}}{J_{25}^4} \end{aligned}$$

and

$$\begin{aligned} -\frac{J_{100}^8}{J_{5,100}^2J_{15,100}^2J_{35,100}^2J_{45,100}^2} =-\frac{\overline{J}_{5,25}^2\overline{J}_{10,25}^2}{J_{25}^4}, \end{aligned}$$

we find that (6.24) is equivalent to

$$\begin{aligned} -J_{5,25}^2J_{10,25}^2=q^5\overline{J}_{0,25}^2\overline{J}_{5,25} \overline{J}_{10,25}-\overline{J}_{5,25}^2\overline{J}_{10,25}^2. \end{aligned}$$

This follows from (6.8). So, we complete the proof of (6.16). \(\square \)

Sketch of the proof of Lemma 4.3

Expanding the right side of (4.6) and comparing both sides according to the powers of \(q\) modulo \(5\), we find that it suffices to prove the five identities,

$$\begin{aligned}&\frac{J_{10,100}^2J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{50,100}^2}{2J_{100}^9}\nonumber \\&\quad =\left\{ \frac{J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{10,100}J_{15,100}^3J_{25,100}J_{35,100}^3J_{40,100}^2J_{45,100}^3}\right. \nonumber \\&\qquad \left. - 2q^5\frac{J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^2J_{25,100}^3J_{30,100}J_{35,100}^2J_{45,100}^3}\right\} \nonumber \\&\qquad \times \frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}} -q^3J_{25,100}\nonumber \\&\qquad \times \left\{ \frac{2q^7J_{10,100}^2J_{40,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^3J_{25,100}^3J_{30,100}^2J_{35,100}^2J_{45,100}^3}\right. \nonumber \\&\qquad \left. +\frac{J_{10,100}^2J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{50,100}^{2}}{2q^3J_{25,100}J_{100}^9}\right\} \nonumber \\&\qquad -\frac{qJ_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}} \nonumber \\&\qquad \times \frac{q^4J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^3J_{20,100}^2J_{25,100}J_{30,100}J_{35,100}^3J_{45,100}^3}, \end{aligned}$$
(6.25)
$$\begin{aligned}&-\frac{qJ_{5,100}J_{10,100}^2J_{15,100}J_{30,100}^2J_{35,100}J_{40,100}^2J_{45,100}J_{50,100}}{J_{100}^9}\nonumber \\&\quad =\frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}} \times \frac{2q^6J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{15,100}^3J_{20,100}J_{25,100}^3J_{35,100}^3J_{40,100}J_{45,100}^2}\nonumber \\&\qquad -\left\{ \frac{J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{10,100}J_{15,100}^3J_{25,100}J_{35,100}^3J_{40,100}^2J_{45,100}^3}\nonumber \right. \\&\qquad \left. - \frac{2q^5J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^2J_{25,100}^3J_{30,100}J_{35,100}^2J_{45,100}^3}\right\} \nonumber \\&\qquad \times \frac{qJ_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}} -q^3J_{25,100}\nonumber \\&\qquad \times \frac{q^3J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}J_{15,100}^4J_{25,100}J_{35,100}^4J_{40,100}^2J_{45,100}^2}, \end{aligned}$$
(6.26)
$$\begin{aligned}&\frac{J_{10,100}^3J_{15,100}J_{25,100}^2J_{35,100}J_{40,100}^3J_{45,100}^3J_{50,100}^2}{2q^3J_{20,100}J_{100}^9}\nonumber \\&\quad =\left\{ \frac{2q^7J_{10,100}^2J_{40,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^3J_{25,100}^3J_{30,100}^2J_{35,100}^2J_{45,100}^3}\nonumber \right. \\&\qquad \left. +\frac{J_{10,100}^2J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{50,100}^{2}}{2q^3J_{25,100}J_{100}^9}\right\} \nonumber \\&\qquad \times \frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}} -q^3J_{25,100}\nonumber \\&\qquad \times \frac{q^4J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^3J_{20,100}^2J_{25,100}J_{30,100}J_{35,100}^3J_{45,100}^3}\nonumber \\&\qquad -\frac{qJ_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}} \!\times \!\frac{2q^6J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{15,100}^3J_{20,100}J_{25,100}^3J_{35,100}^3J_{40,100}J_{45,100}^2},\nonumber \\ \end{aligned}$$
(6.27)
$$\begin{aligned}&-\frac{J_{5,100}J_{20,100}^3J_{25,100}^2J_{30,100}^3J_{45,100}J_{50,100}^2}{2q^2J_{40,100}J_{100}^9}\nonumber \\&\qquad =\frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}} \times \frac{q^3J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}J_{15,100}^4J_{25,100}J_{35,100}^4J_{40,100}^2J_{45,100}^2}\nonumber \\&\qquad -\left\{ \frac{2q^7J_{10,100}^2J_{40,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^3J_{25,100}^3J_{30,100}^2J_{35,100}^2J_{45,100}^3}\nonumber \right. \\&\qquad \left. +\frac{J_{10,100}^2J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{50,100}^{2}}{2q^3J_{25,100}J_{100}^9}\right\} \nonumber \\&\qquad \times q\frac{J_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}} -q^3J_{25,100}\nonumber \\&\qquad \times \left\{ \frac{J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{10,100}J_{15,100}^3J_{25,100}J_{35,100}^3J_{40,100}^2J_{45,100}^3}\nonumber \right. \\&\qquad \left. - \frac{2q^5J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^2J_{25,100}^3J_{30,100}J_{35,100}^2J_{45,100}^3}\right\} , \end{aligned}$$
(6.28)
$$\begin{aligned} 0&= \frac{J_{15,100}J_{20,100}J_{35,100}J_{50,100}}{J_{10,100}J_{25,100}J_{40,100}} \times \frac{q^4J_{10,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^3J_{20,100}^2J_{25,100}J_{30,100}J_{35,100}^3J_{45,100}^3}\nonumber \\&-q\frac{J_{5,100}J_{40,100}J_{45,100}J_{50,100}}{J_{20,100}J_{25,100}J_{30,100}} \times \frac{q^3J_{30,100}J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{10,100}J_{15,100}^4J_{25,100}J_{35,100}^4J_{40,100}^2J_{45,100}^2}\nonumber \\&-q^3J_{25,100}\times \frac{2q^6J_{50,100}J_{100}^{15}}{J_{5,100}^2J_{15,100}^3J_{20,100}J_{25,100}^3J_{35,100}^3J_{40,100}J_{45,100}^2}. \end{aligned}$$
(6.29)

The proof of the above five identities are quite similar to each other. We give the details of the proof of the first identity and omit the rest. After simplifying, we find that, to prove (6.25), it suffices to show that

$$\begin{aligned}&\frac{J_{10,100}^2J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{50,100}^2}{J_{100}^9}\nonumber \\&\quad =\left\{ \frac{J_{20,100}J_{30,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{10,100}^2J_{15,100}^2J_{25,100}^2J_{35,100}^2J_{40,100}^3J_{45,100}^3}\nonumber \right. \\&\qquad \left. -\frac{2q^5J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{15,100}J_{20,100}J_{25,100}^4J_{30,100}J_{35,100}J_{40,100}J_{45,100}^3}\right\} \nonumber \\&\qquad -\left\{ \frac{q^5J_{10,100}J_{40,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^2J_{15,100}^3J_{20,100}^3J_{25,100}^2J_{30,100}^2J_{35,100}^3J_{45,100}^2}\nonumber \right. \\&\qquad \left. +\frac{2q^{10}J_{10,100}^2J_{40,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^3J_{25,100}^2J_{30,100}^2J_{35,100}^2J_{45,100}^3}\right\} . \end{aligned}$$
(6.30)

Replacing \(q\) by \(q^{1/2}\) in (6.6), we have

$$\begin{aligned} \frac{J_{10,50}}{J_{5,50}^2J_{20,50}^2}-\frac{J_{20,50}}{J_{10,50}^2J_{15,50}^2} =\frac{2q^{5}}{J_{15,50}J_{20,50}J_{25,50}}. \end{aligned}$$

Noting that \(\frac{J_{k,50}}{J_{50}}=\frac{J_{k,100}J_{50-k,100}}{J_{100}^2}\) and rearranging, the above equation gives

$$\begin{aligned} \frac{J_{10,100}J_{40,100}}{J_{5,100}^2J_{20,100}^2J_{30,100}^2J_{45,100}^2}&= \frac{J_{20,100}J_{30,100}}{J_{10,100}^2J_{15,100}^2J_{35,100}^2J_{40,100}^2}\nonumber \\&+\frac{2q^5}{J_{15,100}J_{20,100}J_{25,100}^2J_{30,100}J_{35,100}}. \end{aligned}$$
(6.31)

Multiplying by \(\frac{J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{25,100}^2J_{40,100}J_{45,100}^3}\) throughout and subtracting

$$\begin{aligned} \frac{4q^5J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{15,100}J_{20,100}J_{25,100}^4J_{30,100}J_{35,100}J_{40,100}J_{45,100}^3} \end{aligned}$$

on both sides, (6.31) becomes

$$\begin{aligned}&\frac{J_{20,100}J_{30,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{10,100}^2J_{15,100}^2J_{25,100}^2J_{35,100}^2J_{40,100}^3J_{45,100}^3}\nonumber \\&\qquad -\frac{2q^5J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{15,100}J_{20,100}J_{25,100}^4J_{30,100}J_{35,100}J_{40,100}J_{45,100}^3}\nonumber \\&\quad =\frac{J_{10,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^5J_{20,100}^2J_{25,100}^2J_{30,100}^2J_{45,100}^5}\nonumber \\&\qquad -\frac{4q^5J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{15,100}J_{20,100}J_{25,100}^4J_{30,100}J_{35,100}J_{40,100}J_{45,100}^3}. \end{aligned}$$
(6.32)

Next, multiplying by \(\frac{q^5J_{10,100}J_{40,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^2J_{15,100}J_{20,100}^3J_{25,100}^2J_{30,100}^3J_{35,100}J_{45,100}^2}\) on the both sides of (6.5) and rearranging, we get

$$\begin{aligned}&\frac{q^5J_{10,100}J_{40,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^2J_{15,100}^3J_{20,100}^3J_{25,100}^2J_{30,100}^2J_{35,100}^3J_{45,100}^2}\nonumber \\&\qquad +\frac{2q^{10}J_{10,100}^2J_{40,100}J_{50,100}J_{100}^{15}}{J_{5,100}^3J_{15,100}^2J_{20,100}^3J_{25,100}^2J_{30,100}^2J_{35,100}^2J_{45,100}^3}\nonumber \\&\quad =\frac{q^5J_{10,100}^2J_{40,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^4J_{15,100}J_{20,100}^3J_{25,100}^2J_{30,100}^3J_{35,100}J_{45,100}^4}. \end{aligned}$$
(6.33)

Substituting (6.32) and (6.33) into (6.30), we find that (6.30) is equivalent to

$$\begin{aligned}&\frac{J_{10,100}^2J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{50,100}^2}{J_{100}^9}\nonumber \\&\quad =\frac{J_{10,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^5J_{20,100}^2J_{25,100}^2J_{30,100}^2J_{45,100}^5}\nonumber \\&\qquad -\frac{4q^5J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{15,100}J_{20,100}J_{25,100}^4J_{30,100}J_{35,100}J_{40,100}J_{45,100}^3}\nonumber \\&\qquad -\frac{q^5J_{10,100}^2J_{40,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^4J_{15,100}J_{20,100}^3J_{25,100}^2J_{30,100}^3J_{35,100}J_{45,100}^4}. \end{aligned}$$
(6.34)

This follows from the two identities,

$$\begin{aligned}&\frac{J_{50,100}^2J_{100}^{15}}{J_{5,100}^4J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{45,100}^4}\nonumber \\&\qquad -\frac{4q^5J_{50,100}^2J_{100}^{15}}{J_{5,100}^3J_{15,100}J_{20,100}J_{25,100}^4J_{30,100}J_{35,100}J_{40,100}J_{45,100}^3}\nonumber \\&\quad =\frac{J_{10,100}^2J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{50,100}^2}{J_{100}^9} \end{aligned}$$
(6.35)

and

$$\begin{aligned}&\frac{J_{10,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^5J_{20,100}^2J_{25,100}^2J_{30,100}^2J_{45,100}^5} -\frac{q^5J_{10,100}^2J_{40,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^4J_{15,100}J_{20,100}^3J_{25,100}^2J_{30,100}^3J_{35,100}J_{45,100}^4}\nonumber \\&\quad =\frac{J_{50,100}^2J_{100}^{15}}{J_{5,100}^4J_{15,100}^2J_{20,100}J_{30,100}J_{35,100}^2J_{40,100}J_{45,100}^4}. \end{aligned}$$
(6.36)

We obtain (6.35) after multiplying by \(\frac{J_{15,100}J_{35,100}J_{50,100}^2J_{100}^{15}}{q^5J_{5,100}J_{30,100}J_{45,100}}\) on both sides of (6.24).

Next, we prove (6.36). Noting that \(\frac{J_{k,50}}{J_{50}}=\frac{J_{k,100}J_{50-k,100}}{J_{100}^2},\) we find that (6.4) is equivalent to

$$\begin{aligned}&J_{15,100}J_{20,100}J_{30,100}J_{35,100}- q^5J_{5,100}J_{10,100}J_{40,100}J_{45,100}\nonumber \\&\quad =\frac{J_{5,100}J_{20,100}^2J_{25,100}^2J_{30,100}^2J_{45,100}}{J_{10,100}J_{15,100}J_{35,100}J_{40,100}}. \end{aligned}$$
(6.37)

Multiplying by \(\frac{J_{10,100}J_{50,100}^2J_{100}^{15}}{J_{5,100}^5J_{15,100}J_{20,100}^3J_{25,100}^2J_{30,100}^3J_{35,100}J_{45,100}^5}\) on both sides of the above equation, we recover (6.36). This completes our proof of (6.25). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, R. The \(M_{2}\)-rank of partitions without repeated odd parts modulo \(6\) and \(10\) . Ramanujan J 37, 391–419 (2015). https://doi.org/10.1007/s11139-014-9578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-014-9578-3

Keywords

Mathematics Subject Classification

Navigation