Skip to main content
Log in

The power series expansion of certain infinite products \(q^{r}\prod_{n=1}^{\infty}(1-q^{n})^{a_{1}}(1-q^{2n})^{a_{2}}\cdots(1-q^{mn})^{a_{m}}\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let ℕ, \(\mathbb{N}_{0}\), ℤ, ℚ, and ℂ denote the sets of positive integers, nonnegative integers, integers, rational numbers, and complex numbers, respectively. If \(f(q)\) is a complex-valued function with

$$f(q)= \sum_{n=0}^{\infty} f_{n} q^{n} \quad\bigl(q \in\mathbb{C}, \vert q \vert <1 \bigr) $$

we define

$$\bigl[f(q)\bigr]_{n}:=f_{n} \quad(n \in\mathbb{N}_{0}). $$

For \(k \in\mathbb{N}\) we define

$$E_{k}:= \prod_{n=1}^{\infty} \bigl(1-q^{kn}\bigr) \quad\bigl(q \in\mathbb{C}, \vert q \vert <1 \bigr). $$

We show how modular equations of a special form can be used in conjunction with the representation numbers of certain quadratic forms to determine

$$\bigl[q^{r}E_{1}^{a_{1}}\cdots E_{m}^{a_{m}} \bigr]_{n} \quad(r \in\mathbb{N}_{0},m \in \mathbb{N},a_{1}, \ldots,a_{m} \in\mathbb{Z}) $$

for certain products \(q^{r}E_{1}^{a_{1}}\cdots E_{m}^{a_{m}}\). For example, we show that

$$\biggl[q^{2}\frac{E_{1}^{4}E_{16}^{4}}{E_{2}^{2}E_{8}^{2}} \biggr]_{n} = \begin{cases} 0 & \mbox{if}\ n \equiv1\ (\mbox{mod}\ 4),\\ - \sigma(N) & \mbox{if}\ n \equiv3\ (\mbox{mod}\ 4),\\ \sigma(N) & \mbox{if}\ n \equiv2\ (\mbox{mod}\ 4),\\ 4\sigma(N) & \mbox{if}\ n \equiv4\ (\mbox{mod}\ 8),\\ 0 & \mbox{if}\ n \equiv0\ (\mbox{mod}\ 8), \end{cases} $$

where \(N\) denotes the odd part of the positive integer \(n\) and

$$\sigma(n): =\sum_{ \begin{array}{c} \scriptstyle d \in\mathbb{N}\\[-3pt] \scriptstyle d \mid n \end{array}} d. $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaca, A.: Representations by quaternary quadratic forms whose coefficients are 1, 3 and 9. Acta Arith. 136, 151–166 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alaca, A., Alaca, Ş., Lemire, M.F., Williams, K.S.: Nineteen quaternary quadratic forms. Acta Arith. 130, 277–310 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alaca, A., Alaca, Ş., Lemire, M.F., Williams, K.S.: Jacobi’s identity and representations of integers by certain quaternary quadratic forms. Int. J. Mod. Math. 2, 143–176 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Alaca, A., Alaca, Ş., Lemire, M.F., Williams, K.S.: The number of representations of a positive integer by certain quaternary quadratic forms. Int. J. Number Theory 5, 13–40 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alaca, A., Alaca, Ş., Williams, K.S.: On the two-dimensional theta functions of the Borweins. Acta Arith. 124, 177–195 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alaca, A., Alaca, Ş., Williams, K.S.: On the quaternary forms \(x^{2}+y^{2}+z^{2}+5t^{2}\), \(x^{2}+y^{2}+5z^{2}+5t^{2}\) and \(x^{2}+5y^{2}+5z^{2}+5t^{2}\). JP J. Algebra Number Theory Appl. 9, 37–53 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Alaca, A., Alaca, Ş., Williams, K.S.: Liouville’s sextanary quadratic forms \(x^{2}+y^{2}+z^{2}+t^{2}+2u^{2}+2v^{2}\), \(x^{2}+y^{2}+2z^{2}+2t^{2}+2u^{2}+2v^{2}\) and \(x^{2}+2y^{2}+2z^{2}+2t^{2}+2u^{2}+4v^{2}\), Far East. J. Math. Sci. 30, 547–556 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Alaca, Ş., Williams, K.S.: The number of representations of a positive integer by certain octonary quadratic forms. Funct. Approx. Comment. Math. 43, 45–54 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berndt, B.C.: Ramanujan’s Notebooks Part III. Springer, New York (1991)

    Book  MATH  Google Scholar 

  10. Berndt, B.C.: Number Theory in the Spirit of Ramanujan. Am. Math. Soc., Providence (2006)

    MATH  Google Scholar 

  11. Bhargava, S.: Some applications of Ramanujan’s remarkable summation formula. In: Ramanujan Rediscovered. Proceedings of a Conference on Elliptic Functions, Partitions, and \(q\)-Series in Memory of K. Venkatachaliengar, Bangalore, 1–5 June 2009. Ramanujan Mathematical Society Lecture Notes Series, vol. 14, pp. 63–72. Ramanujan Mathematical Society, Thiruchirappalli (2010)

    Google Scholar 

  12. Blecksmith, R., Brillhart, J., Gerst, I.: Parity results for certain partition functions and identities similar to theta function identities. Math. Comput. 48, 29–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, S.-L., Huang, S.-S.: Identities for certain products of theta functions. Ramanujan J. 8, 5–12 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cooper, S., Hirschhorn, M.: On some sum-to-product identities. Bull. Aust. Math. Soc. 63, 353–365 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn. Oxford University Press, London (1960)

    MATH  Google Scholar 

  16. Huard, J.G., Ou, Z.M., Spearman, B.K., Williams, K.S.: Elementary evaluation of certain convolution sums involving divisor functions. In: Bennett, M.A., et al. (eds.) Number Theory for the Millennium, II, pp. 229–274. A K Peters, Natick (2002)

    Google Scholar 

  17. Liouville, J.: Sur la forme \(x^{2}+y^{2}+3(z^{2}+t^{2})\). J. Math. Pures Appl. 5, 147–152 (1860)

    Google Scholar 

  18. Liouville, J.: Sur la forme \(x^{2}+y^{2}+2(z^{2}+t^{2})\). J. Math. Pures Appl. 5, 269–272 (1860)

    Google Scholar 

  19. Liouville, J.: Sur la forme \(x^{2}+y^{2}+4(z^{2}+t^{2})\). J. Math. Pures Appl. 5, 305–308 (1860)

    Google Scholar 

  20. Liouville, J.: Sur la forme \(x^{2}+2y^{2}+4z^{2}+8t^{2}\). J. Math. Pures Appl. 6, 409–416 (1861)

    Google Scholar 

  21. Liouville, J.: Sur la forme \(x^{2}+2y^{2}+4z^{2}+4t^{2}\). J. Math. Pures Appl. 7, 62–64 (1862)

    Google Scholar 

  22. Liouville, J.: Sur la forme \(x^{2}+2y^{2}+8z^{2}+8t^{2}\). J. Math. Pures Appl. 7, 65–68 (1862)

    Google Scholar 

  23. Liouville, J.: Sur la forme \(x^{2}+y^{2}+2z^{2}+4t^{2}\). J. Math. Pures Appl. 7, 99–100 (1862)

    Google Scholar 

  24. Liouville, J.: Sur la forme \(x^{2}+y^{2}+4z^{2}+8t^{2}\). J. Math. Pures Appl. 7, 103–104 (1862)

    Google Scholar 

  25. Liouville, J.: Sur la forme \(x^{2}+y^{2}+8z^{2}+8t^{2}\). J. Math. Pures Appl. 7, 109–112 (1862)

    Google Scholar 

  26. Liouville, J.: Sur la forme \(x^{2}+xy+y^{2}+z^{2}+zt+t^{2}\). J. Math. Pures Appl. 8, 141–144 (1863)

    Google Scholar 

  27. Liouville, J.: Sur la forme \(x^{2}+xy+y^{2}+2z^{2}+2zt+2t^{2}\). J. Math. Pures Appl. 8, 308–310 (1863)

    Google Scholar 

  28. Liouville, J.: Sur la forme \(2x^{2}+2xy+2y^{2}+3z^{2}+3zt+3t^{2}\). J. Math. Pures Appl. 9, 183–184 (1864)

    Google Scholar 

  29. Liouville, J.: Sur la forme \(x^{2}+xy+y^{2}+3z^{2}+3zt+3t^{2}\). J. Math. Pures Appl. 9, 223–224 (1864)

    Google Scholar 

  30. Williams, K.S.: On the representations of a positive integer by the forms \(x^{2}+y^{2}+z^{2}+2t^{2}\) and \(x^{2}+2y^{2}+2z^{2}+2t^{2}\). Int. J. Mod. Math. 3, 225–230 (2008)

    MATH  MathSciNet  Google Scholar 

  31. Williams, K.S.: Number Theory in the Spirit of Liouville. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  32. Williams, K.S.: Fourier series of a class of eta quotients. Int. J. Number Theory 8, 993–1004 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pehlivan, L., Williams, K.S. The power series expansion of certain infinite products \(q^{r}\prod_{n=1}^{\infty}(1-q^{n})^{a_{1}}(1-q^{2n})^{a_{2}}\cdots(1-q^{mn})^{a_{m}}\) . Ramanujan J 33, 23–53 (2014). https://doi.org/10.1007/s11139-013-9503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-013-9503-1

Keywords

Mathematics Subject Classification

Navigation