Skip to main content
Log in

On the rational approximation of the sum of the reciprocals of the Fermat numbers

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(\mathcal{G}(z):=\sum_{n\geqslant0} z^{2^{n}}(1-z^{2^{n}})^{-1}\) denote the generating function of the ruler function, and \(\mathcal {F}(z):=\sum_{n\geqslant} z^{2^{n}}(1+z^{2^{n}})^{-1}\); note that the special value \(\mathcal{F}(1/2)\) is the sum of the reciprocals of the Fermat numbers \(F_{n}:=2^{2^{n}}+1\). The functions \(\mathcal{F}(z)\) and \(\mathcal{G}(z)\) as well as their special values have been studied by Mahler, Golomb, Schwarz, and Duverney; it is known that the numbers \(\mathcal {F}(\alpha)\) and \(\mathcal{G}(\alpha)\) are transcendental for all algebraic numbers α which satisfy 0<α<1.

For a sequence u, denote the Hankel matrix \(H_{n}^{p}(\mathbf {u}):=(u({p+i+j-2}))_{1\leqslant i,j\leqslant n}\). Let α be a real number. The irrationality exponent μ(α) is defined as the supremum of the set of real numbers μ such that the inequality |αp/q|<q μ has infinitely many solutions (p,q)∈ℤ×ℕ.

In this paper, we first prove that the determinants of \(H_{n}^{1}(\mathbf {g})\) and \(H_{n}^{1}(\mathbf{f})\) are nonzero for every n⩾1. We then use this result to prove that for b⩾2 the irrationality exponents \(\mu(\mathcal{F}(1/b))\) and \(\mu(\mathcal{G}(1/b))\) are equal to 2; in particular, the irrationality exponent of the sum of the reciprocals of the Fermat numbers is 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allouche, J.-P., Peyrière, J., Wen, Z.-X., Wen, Z.-Y.: Hankel determinants of the Thue–Morse sequence. Ann. Inst. Fourier (Grenoble) 48(1), 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamczewski, B., Rivoal, T.: Irrationality measures for some automatic real numbers. Math. Proc. Camb. Philos. Soc. 147(3), 659–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezinski, C.: Padé-type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics, vol. 50. Birkhäuser, Basel (1980)

    MATH  Google Scholar 

  4. Bugeaud, Y.: On the rational approximation of the Thue–Morse–Mahler number. Ann. Inst. Fourier (Grenoble) (to appear)

  5. Coons, M.: Extension of some theorems of W. Schwarz. Can. Math. Bull. (2011). doi:10.4153/CMB-2011-037-9

    Google Scholar 

  6. Duverney, D.: Transcendence of a fast converging series of rational numbers. Math. Proc. Camb. Philos. Soc. 130(2), 193–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golomb, S.W.: On the sum of the reciprocals of the Fermat numbers and related irrationalities. Can. J. Math. 15, 475–478 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liouville, J.: Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques. C. R. Acad. Sci. Paris 18, 883–885 (1844). 910–911

    Google Scholar 

  9. Mahler, K.: Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101(1), 342–366 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mahler, K.: Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z. 32(1), 545–585 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mahler, K.: Uber das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen. Math. Ann. 103(1), 573–587 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  12. Roth, K.F.: Rational approximations to algebraic numbers. Mathematika 2, 1–20 (1955). Corrigendum 168

    Article  MathSciNet  Google Scholar 

  13. Schwarz, W.: Remarks on the irrationality and transcendence of certain series. Math. Scand. 20, 269–274 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Yann Bugeaud, Kevin Hare, Cameron Stewart, and Jeffrey Shallit for helpful comments and conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Coons.

Additional information

The research of M. Coons was supported in part by a Fields–Ontario Fellowship and NSERC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coons, M. On the rational approximation of the sum of the reciprocals of the Fermat numbers. Ramanujan J 30, 39–65 (2013). https://doi.org/10.1007/s11139-012-9410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-012-9410-x

Keywords

Mathematics Subject Classification (2010)

Navigation